REVIEWARTICLE
Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy
Zhao Zou ?, Linhong Zhong b,\*
aDivision of Cardiology,The First Affiliated Hospital of Chongqing Medical University, Chongqing
400010,China
ChongqingeyLaboratoryofUtrasoundMoleculrmaging,InstituteofUtrasoundImagingnd
DepartmentofUtrasoundTheSecondAffliated HospitalofChongqingMedicalUniversityChongqing
400010,China
Received 24 February 2024;received in revised form 2 July 2024;accepted 2August 2024
Availableonline30August2024
KEYWORDS
Anaplastic thyroid cancer;
ATC;
Genetic roles;
Immunotherapy; Targeted therapy
AbstractAnaplastic thyroid cancer(ATC)stands as themost formidableform of thyroid malignancy,presenting a persistent challenge in clinical management.Recent yearshave witnessed a gradual unveiling of the intricate genetic underpinnings governing ATC through next-generation sequencing.The emergence of this genetic landscape has paved the way for the exploration of targeted therapies and immunotherapies inclinical trials.Despite these strides,the precise mechanisms governing ATC pathogenesis and the identification of efficacious treatments demandfurtherinvestigation.Our comprehensive review stemsfrom an extensive literature searchfocusing onthe geneticimplications,notably the pivotal MAPK and PI3K-AKT-mTOR signaling pathways,along with targeted therapies and immunotherapies in ATC.Moreover,we screen and summarize the advances and challenges inthe current diagnostic approachesforATC,including theinvasive tissue sampling represented byfine needle aspiration and core needle biopsy,immunohistochemistry, and ^{18}\mathsf{F} -fluorodeoxyglucose positron emission tomography/computed tomography.We alsoinvestigate enormous studies on the prognosis of ATC and outline independent prognostic factors for future clinical assessment and therapyforATC.By synthesizing this literature,we aimto encapsulate the evolving landscape of ATC oncology,potentially shedding light on novel pathogenic mechanisms and avenues for therapeutic exploration.
⊚ 2024 The Authors.Publishing services by Elsevier B.V.on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
Introduction
The incidence of thyroid cancer(TC)has experienced a global surge over the past five decades.Up to 2020,TC is theninthmostprevalentcancer worldwide.²Theglobal age-standardizedincidencerateinwomen(10.1per 100,000 women) is 3-fold than that in men (3.1 per 100,000 men),while both sexes share a similar global age-standardizedmortalityrate(0.3per100,000menand0.5per 100,000 women, respectively).2,3 Among thyroid malignancies,anaplastic TC (ATC), characterized as the most aggressive form,represents approximately 1.3%{-9.8%} of cases.4 Despite its clinical significance,the underlying mechanisms orchestrating ATC pathogenesis remain enigmatic.
Genetic alterationsplay apivotalroleinthepathogenesis of ATC.Notably, copy-number aberrations and singlenucleotide variants inATCs surpass thoseobservedin papillarythyroid cancer(PTC)but arefewercomparedwith mostother adultcancer types.Patientsexhibitinga lower mutationrate _{1>10} single-nucleotide variants per megabase)demonstratedsignificantlyimprovedsurvival(hazard ratio/H \mathsf{I R}=0.51 ., 95% confidence interval/Cl: 0.33-0.77; {±b P}=0.002 .5 Common genomic features shared between ATC and differentiated thyroid cancer(DTC)alsosuggest a common evolutionary origin.5During the anaplastic transformation of DTC, four distinct types of ATC cells emerge, including stress-responsive DTC cells,inflammatory ATC cells,mitotic-defectiveATCcells,and mesenchymalATC cells.6 Crucially, two stages are identified in this transformation,the diploid stage,characterized by inflammatoryATCcellsexhibitingdiploidgenomes andinflammatory phenotypes,and the subsequent aneuploid stage,marked by theacquisitionof aneuploidgenomes andmesenchymal phenotypes by mesenchymal ATC cells.6
Recently,advancements inhigh-throughput sequencing haveunveiled significant genetic alterations linked toATC's development(detailed inTable 1),providing pivotal insights intopotential target therapies alignedwith these geneticaberrations.Thesegeneticcues have sparked aray of hope for ATC patients, offering prospects for novel targettherapiesandimmunotherapies.
In this review,we aim to explore these genetic pointers and their relevance to emerging target therapies and immunotherapies in the context of ATC.
MAPK signaling pathway
Activationandfunction
Receptortyrosinekinases(RTKs),integralsingle-span transmembranereceptors,encompass adiversespectrum organizedinto19distinctfamilies.Notable among these are epidermal growth factor receptor (EGFR),plateletderived growth factor receptor (PDGFR),vascular endothelial growth factor receptor (VEGFR),and fibroblast growthfactor receptor(FGFR).7Each RTKfamily binds to specific extracellular ligands,_ initiating intracellular signaling cascades upon binding.7
Uponactivation,RTKsoperateupstreamofratsarcoma (RAS), a small GTPase comprising three gene isoforms: HRAS, NRAS, and KRAS.8 RAS proteins directly engage phosphatidylinositol 3-kinase (Pl3K),catalyzing the conversion of phosphatidylinositol 4,5-biphosphate (\mathsf{P l}\mathsf{P}_{2}) into phosphatidylinositol 3,4,5-trisphosphate (\mathsf{P l}\mathsf{P}_{3}) .9Consequently,RAS exerts itsinfluence upstream inboth the MAPK and PI3K-AKT signaling pathways.
ActivatedRAsinterfaceswithrapidlyaccelerated fibrosarcoma (RAF),encompassing three isoforms: raf-1 proto-oncogene,serine/threonine kinase (CRAF),v-raf murine sarcomaviral oncogenehomolog B1(BRAF),and araf proto-oncogene,serine/threoninekinase (ARAF).1°RAF heterodimerizes withMAPKkinase (MEK),and active MEK phosphorylatesextracellularsignal-regulatedkinase (ERK).10 Subsequently, ERK travels to the nucleus, modulatingvarioustranscriptionfactors throughphosphorylation.11This MAPK signaling pathway is typically associated with cellular proliferation and survival mechanisms.12
Reference | Cases | Gene mutations | ||||||||
ALK (%) | BRAF (%) | CKI (%) | EIF1AX (%) | PIK3CA (%) | PTEN (%) | RAS (%) | TERT (%) | TP53 (%) | ||
Glenn et al274 | 7 | 0 | 29 | NA | 0 | 0 | 0 | 14 | NA | 43 |
Audrey et a[402 | 9 | 0 | 67 | NA | NA | 33 | 11 | 0 | NA | 78 |
Jeon et al403 | 11 | 0 | 91 | NA | 0 | 18 | 9. | 9 | NA | 73 |
Naveen et a(404 | 14 | 0 | 18 | NA | 0 | 18 | 18 | 18 | 36 | 55 |
Kunstman et a( 13 | 22 | 0 | 27 | 9. | 14 | 8 | 0 | 27 | NA | 27 |
Duan et al102 | 25 | NA | 56 | NA | NA | 44 | NA | 28 | 56 | 60 |
Seong-Keun et al112 | 27 | 0 | 41 | 22 | 33 | 11 | 7. | 44 | 56 | 48 |
Zhang et al101 | 29 | NA | 24 | 14 | NA | 24 | NA | 14 | 21 | 48 |
Latteyer et al405 | 30 | 20 | 7 | NA | NA | NA | NA | 23 | NA | 60 |
Landa et al20 | 33 | 0 | 45 | 0. | 9. | 18 | 15 | 24 | 73 | 73 |
Khan et al13 | 90 | 2 | 34 | 52 | NA | 12 | 13 | 26 | 32 | 66 |
Vera et al406 | 118 | 0 | 11 | 17 | NA | 12 | 0 | 20 | 73 | 55 |
Xu et al15 | 126 | 3 | 45 | 29 | 14 | 18 | 14 | 24 | 75 | 63 |
Benjamin et al105 | 144 | 1 | 14 | 3 | NA | 6 . | 9 | 43 | 54 | 54 |
Pozdeyev et al22 | 196 | 1 | 41 | 35 | NA | 14 | 11 | 27 | 65 | 65 |
Wang et al104 | 202 | NA | 42 | 4 | NA | 13 | 8 | 22 | 37 | 59 |
RoleofMAPKsignalingpathwayinATC
RAS
RAS mutations manifest as a prevalent occurrence in ATC. These mutations span across all RAS isoforms,& with NRAS mutationsexhibiting ahigher incidence amongpatients younger than 50 years.13 Notably, RAS mutations are less frequentinsecondaryATCcomparedwithprimarycases and arefrequently linked to unfavorable prognoses.14Cases displayingBRAForRASmutationsdemonstratesimilarfrequencies in nodal and distant metastases.15,16 Of significance, K R A S^{\mathsf{G12D}} ,in conjunction with thyroid hormone receptor beta (THRβ),orchestrates myc up-regulation, hastening ATC progression.17 Patients harboring wild-type KRAScodon12/13exhibiteda medianoverall survival (mOS) of 19 weeks.18
DistinctassociationssurfacebetweenRASmutations and othergenealterations.Forinstance,a mutualexclusivityis observed between B R A F^{\mathsf{v600E}} and RAS alterations.13 Moreover,RASmutations and tumorsuppressorgene p53(TP53) mutationsdominateandexhibitmutualexclusivityinATC and poorly differentiated thyroid cancer (PDTC).19Additionally,a gradually emerging correlation between eukaryoticinitiationfactorIAX(EIFIAX)mutationsandRAS in ATC is evident. EIF1AX mutations frequently_co-occur with RAS mutations in 117 PDTC and ATC cases.20 Notably, within a cohort of 31 patients,all three cases exhibiting combinations of severalgenetic mutations(EIF1AX,RAS, TERT, and TP53) were diagnosed as ATC.21
Proposalshaveemergedforastandardizedclassification ofATCbasedonRASandothermolecularbiomarkers.This includes delineating type 1 ATC (BRAF-positive), likely originating from PTC; type 2 ATC (NRAS-positive), potentially originatingfrom follicular thyroid cancer(FTC);type 3 ATC (mutated RAS-positive), potentially originating from FTC or Huirthle cell carcinoma; and a mixed ATC subtype characterized by inactive mutations in cell-cycleregulation genes(e.g.,CDKN2A and CDKN2B).22
RAF (BRAF,BRAFV600E)
The role of BRAF mutation, particularly BRAFV600E, emerges as pivotal in ATC pathogenesis.Encoded by the BRAFT1799A mutation,23 BRAFV600E\* drivesheightenedextracellular signal-regulatedkinase phosphorylation,fostering aberrant cellproliferation andstiflingtheessentialgenes crucialfor radioiodine responsiveness in Tc.24 B-cell lymphoma-2- associated athanogene 3(BAG3)interaction with BRAF prevents proteasome-mediated degradation,sustaining ATC cell growth.25 Notably, in vivo experiments demonstrated that silencing BRAF inhibited tumor growth.26 Outcomeswerenotablyworseincases displayingconcomitant BRAF/RAS andTERT mutationscompared withsingular mutations,15 5withBRAF mutations exhibitinggreater prevalence in secondary ATC.14 Consequently, BRAF status assessmentbecameastapleinATCevaluations,with immunohistochemical detection showcasing 100% sensitivity and 95.7% specificity for B R A F^{\mathsf{V}600E} status in ATC.27 Additionally,reports indicate the utility of droplet digital PCR, based on fine needle aspiration (FNA),for rapid BRAFV600 detection in unresectable ATC.28
BRAFV600E significantly accelerates ATC progression, orchestratingcellularlactylationto_promoteproliferation.29 It collaborates with P1K3C A^{H1074R} (Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) is one ofPI3K catalytic subunits) or silences PTEN to advance ATC pathogenesis.30 Moreover, it impedes mitochondrialpermeability transition through thepERKpGSK-CypDpathway,thwarting ATC cell death.31Activation of the JAK/STAT pathway in B R A F^{\mathsf{V}600E} ATC cells contributes toresistanceagainst BRAF inhibitors.32 Knockdownof S100A4, overexpressed in ATC, led to reduced BRAFV600E expression,curbing proliferation and metastasis.33 Interestingly, B R A F^{~600E} correlates with cell-free DNA markers ALU83 and ALU244,associated with increased methylation, albeitdetectedlessfrequentlyinTCthaninPTC4linking BRAFV600E to oncogenic hypermethylation.35
Additionally,BRAF-mutatedATCdemonstratesarobust association with PTC.Evidence suggests both BRAF-positive PDTC and ATC harbor regions of preexisting papillary carcinoma,affirming BRAFmutationsinwell-differentiated and dedifferentiated components.36Thepresence ofBRAF mutationcldingFV00isbservedinTcoistin with PTC.37-40 Notably, cases of BRAF mutation were identified in ATCs derived from BRAF-mutant PTCs,41 underscoringthe engagement ofBRAF mutation,particularly BRAFV6o0E in the tumorigenesis of both ATC and PTC.
PI3K-AKT-mTOR signaling pathway
Activationandfunction
Theintertwinedsignalingpathways ofPI3K-AKT and the mechanistic target ofrapamycin(mTOR) stand as pivotal regulatorsorchestratingcellgrowthandsurvivalwithina unifiedsignalaxis.42Pl3Kcatalyzes theconversionfrom \mathsf{P l P}_{2} to {\mathsf{P I P}}_{3} ,where {\mathsf{P I P}}_{3} recruits proteinkinaseB(AKT)to the cellular membrane.43 AKT, in turn, governs cell survival andproliferationwhileexertingapositiveregulatoryeffect on mTOR.43 mTOR elevation contributes to increased levels of tumorigenesis-associated proteins like hypoxia-inducible factor44 and cyclin D1.45 Active AKT demonstrates heightenednucleardistributionandexpressionlevelsinbothATC andPTC.AKTdeficiency correlateswith diminished cellular proliferation andinvasivepotential,underscoringitsrole in disease progression.46 Notably, PTEN, a pivotal downstream effector of the PI3K-AKT-mTOR pathway,functions as a proteinandlipidphosphatase.Itsroleinvolvesthe dephosphorylation of {\mathsf{P l P}}_{3} into {\mathsf{P}}|{\mathsf{P}}_{2} 47thereby inhibiting the PI3K-AKT-mTOR cascade.By modulating {\mathsf{P l P}}_{3} levels,PTEN intricatelyregulates cell survival,proliferation,and migration.48 Moreover, the PI3K-AKT pathway potentially operatesdownstreamofthecentrosomalproteinof 55~\mathsf{k D a} (CEP55),an independent prognostic indicatorin ATC.49 This suggestsaregulatoryrelationshipbetweenCEP55andthe PI3K-AKT pathway, further emphasizing the intricate interplayofmolecularmechanismsinfluencingATCprogression and prognosis.
RoleofPI3K-AKT-mTORsignalingpathwayinATC
PrevalenceofmutationsinATC
Mutations within the PI3K-AKT-mTOR signaling pathway emergeasfrequentlyobservedinATC.Notably,mutations in PIK3CA,AKT, and PTEN are more prevalent in ATC compared with FTC.5° In a subset of PIK3CA-mutant ATC cases,activationof AKT wasevident in9out of 16instances.51 within a cohort of {50}\mathsf{A T C} cases, rates of PIK3CA copygain,PIK3CA mutations,and PTEN mutations stood at 42% , 12% ,and 16% ,respectively.52The concurrent presence of BRAF and PIK3CA mutations in ATC was reported at a rate of 10.3% 53 both identified as adverse prognostic factors for ATC patient survival.54 Notably, patients exhibiting a PIK3CA mutation detected in circulating cell-free DNA showcased poorer overall survival(Os).55 Recent findings revealed a novel mTORpoint mutation(A1256G,exon 9) identified in the C643 ATC cell line.56 Moreover, a comprehensiveevaluationacross14ATCcasesunveileda complete loss ofPTEN mRNA expression in 4 instances, correlating significantly with the anaplastic subtype.57 TranscriptionalsilencingofPTENemergesasa noteworthy association within the context of ATCpathology,emphasizing its potential role in disease progression and subtype delineation.
Development of ATC
Themigration and invasion of ATC cells exhibit strong correlationswiththestatusofthePI3K-AKT-mTORpathway.OGlcNAcylation significantly augments ATC cell invasion, partly attributed toPI3K-AKTsignaling.58MicroRNA-125b exertsinhibitory effects ontumormigrationand invasionby targetingphosphoinositide3-kinasecatalyticsubunitdelta (PIK3CD),an alternate PI3K catalytic subunit.59within the intricate network,the Pl3K-AKT pathway interconnects withvariousaxesinfluencingATCaggressiveness.For instance,theHOXD9-MicroRNA-451a-PSMB8axismodulates apoptosis,promotes epithelial-mesenchymal transition, andexacerbatesmetastasiswithinATC,allorchestratedvia the PI3K-AKT signaling cascade.60 Vascular cell adhesion molecule-1(vCAM-1) contributestomigration and invasion through thePI3K-AKT-mTORpathwayin vitro,withboth VCAM-1and thepathway showing activationinBRAF-inhibition treatmentresistance.61Moreover,SrY-related HMG box-2(SOX2)intensifies ATC aggressiveness via PI3K-AKTmediated fibronectin 1 (FN1) up-regulation.62 The insulinlike growthfactor(IGF)produced by M2-like tumor-associatedmacrophages(TAMs)augmentsATCstemnessandinvasionbyactivating theIR-A/IGF1R-mediatedPI3K-AKTmTOR pathway.63 Intriguingly, grb2-associated binder 1 (GAB1)up-regulation stimulates AKT activation,cellular migration,and invasion throughAKT-MDR1,64while GANT61 suppressesinvasionandepithelial-mesenchymaltransition by targetingAKT-mTOR or JAK-STAT3 pathways inATC.65Akinase interacting protein 1 (AKIP1) knockdown inhibits PI3K-AKT and \upbeta -catenin pathways,mitigating cell invasion and reinstating sensitivity to doxorubicin (Dox).66 These multifacetedinteractionsunderscoretheintricateroleof thePI3K-AKT-mTORpathwayindictatingATCaggressivenessandtherapeuticresponses.
Resistance to agents
ThePI3K-AKT-mTOR pathway significantly contributes to chemotherapyresistanceinATC.Strategies targeting this pathway have shownpromise in overcoming resistance mechanisms.Lexatumumab,acting as a TNF-related apoptosis-inducing ligand receptor 2(TRAIL-R2) agonist antibody,effectivelycircumventedresistancetoapoptosis by inhibiting BRAFV600E,PI3K, and MAPK.67 In BRAFV600E. mutantATCcells,c-Met-mediatedreactivationofthePI3KAKTandMAPKpathwayssubstantiatesresistanceto vemurafenib,an effect mitigated through the dual inhibition of BRAF and c-Met.68 Similarly,concurrent inhibition of SrcFamilyKinases(Src)and MAPK circumvented resistance to dasatinib,a dual Src/Bcr-Abl inhibitor,by impedingPI3KAKT pathways in vitro.69 Furthermore, the combination of PI3K-mTORinhibitionpotentiatedthereversal ofresistance to palbociclib, a CDK4/6 inhibitor, in ATC.70 These approachesillustratethepotentialoftargetingthePl3K-AKTmTORpathwaytoovercomechemotherapyresistancein ATC,offering new avenues for therapeutic intervention.
Interactionwith otherproteins
Forkhead-box (Fox) family proteins
The involvement of forkhead-box (Fox) family proteins in thePI3K-AKT-mTORpathway ofATCunderscorestheir significance in disease progression.Forkhead box protein A1 (FOxA1)exhibitsheightenedexpressionlevelsinATC,and its suppression results in {\sf G}_{1} growth arrest andreduced cell proliferation.71 Conversely, forkhead box protein M1 (FOxM1)displayssubstantialup-regulationinATCs compared withnormal thyroid tissue and other TC types. ElevatedFOxM1levelscorrelatewithTP53loss-of-function and hyperactivation of the PI3K-AKT-FOxO3a pathway.72 InhibitingFoxM1proveseffectiveinreducingtumorburden and curbing metastasis in ATc.72 Furthermore, Fox03a, a pivotalregulatorintumorgrowth,undergoesAKT-mediated phosphorylation,leadingtoitsexclusionfrom the nucleus. In its non-phosphorylated state at S473,Fox03a remains within the nucleus,promoting ATC proliferation by transcriptionally up-regulating cyclin A1.73 Forkhead box K2 (FOxk2)orchestrates thetranscriptional activationof vascularendothelialgrowthfactorA(VEGFA),which,upon binding to VEGFR1,triggers ERK,PI3K-AKT,and P38-MAPK signaling pathways,fostering angiogenesis.74 This angiogenic process contributes toresistance against apatinib,a VEGFR2 inhibitor, in ATC.74 The intricate involvement of FOXfamilyproteins inATCunderscores theirmultifaceted roles in disease progression and therapeuticresistance.
Sodium-iodide symporter
Sodium iodide symporter(Nis),a pivotal plasma membrane glycoprotein,serves as theconduit for iodide transportation into the thyroid.75 In radioactive iodine (^{131}|) therapy for TC,NISfacilitates the uptake of radioactive iodine into TC cells, effectively impeding tumor growth.76
Experimentalworkhasrecentlygraduallyremovedthe veilovertherelationshipbetweenNISandthePl3K-AKTmTORaxis.Invitrostudiesdemonstratedthatdualinhibition of MEK or B R A F^{\mathsf{V}600E} and PI3Kresulted in anup-regulation of NIS expression.77 Similarly,invivo,MEK inhibition exhibited anup-regulatory effect onsodium-iodine symporterexpression.77The intricateregulation of NISinvolves the PI3K-AKT-mTOR signaling pathway,as evidenced by its modulationbyCTOM-DHP,leading toendogenousNISupregulationconcomitantwiththeinhibitionofPI3K-AKTand MAPK signaling pathways in 8505C ATC cell line.78 Noteworthyassociationsemergedbetweentheexpressionlevels of NIS and PTEN and the grade of TC diferentiation.79 Moreover,inresveratrol-suppressed ATC cells,significant features including PTEN up-regulation and concurrent nuclear translocation of NIS and PTEN were observed.79 This intricate interplayhighlights themultifacetedregulatory networkgoverningNisexpressionanditscorrelationswith the PI3K-AKT-mTOR signaling pathway.
Noteworthily, targeting NIS stands as a challenging target in managing ATC.Radio-active iodine therapy showed its paralysis on the ATC due to the cellular resistance to radio-iodine originating fromtheNISabsence or downregulation.80 There are three innovative approaches for improving the radiotoxicity of ATC, namely nanoparticles, agents,andviruses.i)Nanoparticles.Several novel nanoparticleshavebeendevelopedtoameliorateATC's radiotoxicity,like human serum albumin (HSA) * M n O_{2} R mesoporous silicananoparticles,andtyrosine-hyaluronic acid-polyethyleneimine.80 The lipid-peptide-mRNA nanoparticles experimentally smoothed the radio-iodine therapy for ATC significantly.81 Combination therapy of ^{131}| and other agents (cerebroid polydopamine and indocyanine green) improved the therapeutic effect on ATc.8Radio-sensitization of Prima-1, a TP53 mutant restoring agent, enhances the therapeutic impact of ^{131}| -labelled nanoparticles by reactivating mutant TP53.82 i) Agents. Tunicamycin enhancedtheATCredifferentiationandradio-activeiodine uptake by rescuing the NIS expression,83 and bortezomib facilitated the iodide accumulation and showed a therapeutic effect on ATC.84 Autophagy-activating digitalis-like compoundsincreasedtheexpressionof thyroglobulinand ^{131}| uptake byrestoring NIS significantly, and targeting estrogen-related receptor \boldsymbol{\upgamma} (\mathsf{E R R}γ) by its inverse agonists brought the improvement of NIS function via MAPK signaling pathway inATCcells.86-88Tissue factorTF)presencewas notably high in the THJ-16T ATC cell line, and the combination of two TF-specific agents( ^{64}\mathsf{C u} -NOTA-ALT-836and ^{131}| ALT-836) demonstrated efficacy inmanaging ATC in vivo.89 Furthermore, ^{131}| -labeled caerin 1.1 peptide showcased inhibition of ATC tumor growth and migration.9° ii) Virus. One vaccinia virus, GLV-1h153,is an oncolytic agent against ATC by promotingradio-iodineuptake.91Measles virus-mediated NisS expression has shown its therapeutic effect on ^{131}| -resistant ATC,92 and adenoviral transfer of NIS exhibited itsbestperformanceinincreasingNIS expression and radio-iodine administration at post-transfer day 2.93
Thyroidhormonereceptor \mathbf{β}_{\mathbf{β}}
Theassociationbetweenthyroidhormonereceptor \upbeta (THRβ)and the PI3K-AKT pathway in ATC has gradually comeunderscrutiny.Studiesindicatethatelevated expression of THRβ1 influences differentiation phenotypes and fosters cell proliferation in the ARO ATC cell line.94
Conversely, T H Rβ curtails ATC aggressiveness,_promoting apoptosis by inhibiting the PI3K-AKT pathway.95 This inhibitionisrootedinthedown-regulationofreceptortyrosine kinase (RTK) and the concurrent up-regulation of phosphoinositide and AKT phosphatase in vitro.96 Experiments showcasingselectiveactivationofTHRβhavedemonstrated tumor-suppressive effectsinfemalemice,underscoring its potential therapeutic significance.97 Additionally, T H Rβ exhibitsarestrainingeffectontheactivityofATCcancer stem cells.98,99 Despite these insights,further investigationsarewarrantedtodelineatethepreciseroleof THRβ in thepathology of ATC.Continuedresearchholds promiseforadeeperunderstandingof {\sf T H R}β^{\prime}{\sf S} implications in ATC and its potential as a therapeutic target.
Other frequent gene aberrations
Anaplastic lymphoma kinase
Anaplastic lymphoma kinase (ALK),a receptor tyrosine kinase (RTK), typically governs cell proliferation and survival during nervous system development.Positioned on chromosome 2's short arm (2p23),ALK frequently undergoes chromosomal recombination with othergenes(X)to formXALK fusion oncoproteins, known as ALK rearrangements.100 These fusion oncoproteins activate ALK,thereby contributing to thepathogenesis ofATC.
Despite theexceedinglylowprevalence ofALKrearrangements in ATC, theirinvolvement in tumorigenesis remains evident.101-106 A comprehensive wholetranscriptomeanalysishighlightedSTRN-ALKfusionasthe mostfrequentinTC.Itsprevalencewasnotablyhigher in PDTC andATC comparedwith other well-differentiated forms.107 The expression of STRN-ALK, coupled with concurrent TP53 loss,instigates thyroid carcinogenesis,leading to multi-step dedifferentiation progressing from PTC to PDTC and ATC in vivo.108
Intriguingly,twonovel pointmutations,C3592T and G3602A, were identified in exon 23 of the ALK gene in ATC.109' Both mutations heightened tyrosine kinase activities and facilitated cell invasion.109 Despite these findings, the precise role of ALK rearrangements in ATC remains enigmatic,necessitating further research for a comprehensive understanding of their impact on the disease.
Cyclin-dependentkinase
Cyclin-dependentkinases(CDKs),a family of serine/threoninekinases,orchestratedistinctphasesofthecellcycle incollaborationwithcyclins andcyclin-dependentkinase inhibitors (CKIs).11o The regulatory action of CKls, comprising the CDK-interacting protein/kinase inhibitory protein (CIP/KIP)family and the inhibitor of kinase (INK) family, modulates CDK activity.CIP/KIP members such as \mathsf{p}21^{\mathsf{c i p}1/} Waf(CDKN1A,o p1), \mathsf{p}27^{\mathsf{k i p}1} (CDKN1B, or p27), and \mathsf{\ p s7}^{\mathsf{k i p2}} (CDKN1) impede CDK function by disrupting CDKcyclin interactions,while theINk family encompassing p 5^{\mathsf{I N K4b}} (CDKN2B, or p15), p16INK4a (CDKN2A, or p16), p 8^{11N/k4c} (CDKN2C, or p18),and \mathsf{p}19^{\mathsf{I N K4d}} (CDKN2D) primarily binds to CDKs.11i'
Maintaining the interplay among CDKs, cyclins,and CKls is crucial for normal cell cycle progression. Mutations affecting CDKs and their partners,particularly CKls,have beenimplicatedintheinitiationandprogressionofATC. Copy number losses and mutations in CDKN2A and CDKN2B have shown associations with ATC.22
ATCexhibitedhighermutationratesinTP53andCDKN2A comparedwithadvancedDTC,withCDKN2Aloss significantlycorrelatingwithpoorerdisease-specificsurvivalin ATC or advanced DTC cases.112 In ATC cases, CDKN2A mutations, either from copy number loss or truncating mutations,weredetectedin5outof8cases,oftenconcurrent with CDKN2B loss,resulting in diminished mRNA expression of both genes.113?
Two key CKIs, CDKN1A and CDKN1B, have shown a profoundassociationwithrestricting ATC cellproliferation. CDKN1A augmented apoptosis when combined withmanumycin and paclitaxel (PTX) in vitro.114 Intriguingly, both CDKN1A and CDKN1B were up-regulated in cell cycle arrest inducedby diverse agents like bone morphogeneticprotein (BMP-7),115 butyrate,116 simvastatin,117 and insulin-like growth factor binding protein 7 (IGFBP7).118 However, furtherexplorationiswarrantedtoelucidatetheprecise roles of CDKN1AandCDKN1B inconstraining ATC cell proliferation.
Telomerasereversetranscriptase
Telomeres,situated atchromosomalends,undergogradual shortening during DNA replication,a process significantly contributing to cellular senescence.Tocounteract this shortening,telomerase,composedoftelomeraseRNA(the lengthening template)andtelomerasereverse transcriptase (TERT, the catalytic subunit), elongates excessively shortened telomeres,enablingDNAreplication and averting cellular senescence.119 Activation of TERT due to mutations immortalizes TC cells,and its underlying mechanisms have beenprogressively elucidated.
TERT mutations are notably prevalent in ATC,ranging from 21% 0 75% 1 and Chinese ATC samples, the frequency of the TERT ^{1,295,228sf{C}>sf{T}} (TERTC228T) mutation was 34.9% (37 samples), showing an association with older patient age (P=0.02) .120 Notably, TERT promoter mutations, especially C228T, tended to co-occur with B R A F^{\mathsf{V}600E} mutation.121
These TERT mutations,particularly in the promoter region,are correlated with poorer prognoses.Within the previously mentioned cohort,a robust association was observed between TERTC228T and distant metastasis in the American subset.120 Long-term survivors of ATC (alive for 2 yearsorlonger)exhibitlowerratesofconcurrentRAS/BRAF and TERTpromoter mutations compared withATC control cases.122 Furthermore, TERT promoter mutations strongly correlatewithincreasedclinicalburdenandanunfavorable prognosis.121 Independently, TERT promoter mutation is linkedwith the anaplastictransformation ofpapillary carcinoma.123 Recurrent papillary carcinomas with anaplastic transformation showcaseahigher prevalence of BRAFV6O0E mutation andTERTpromoter mutationcompared with those without anaplastic transformation.124 These findings highlighttheintricateassociationsbetweenTERTmutations and theclinicaloutcomesinATC.
Tumor suppressor geneP53
Wild-type TP53 serves critical roles in arresting the cell cycle,aiding in DNA repair,and triggering apoptosis when confronted with DNA damage.125 However, in various humancancers,TP53mutationsstripitoftheseessential functions.126
In thecontextofTC,TP53mutationsexhibitasignificant correlation with ATC compared with other types.ATC showcases substantial TP53 up-regulation in contrast to PTC.127 TP53 overexpression is prevalent in anaplastic carcinoma but not in insular carcinoma,suggesting its involvementindedifferentiatingfrom insular thyroidcarcinoma to ATC.128 Additionally, distinct TP53 mutation patternsbetweenFTCandATClesionsfurtherindicatethe specificity_of TP53 mutations in ATC progression.129 Notably,TP53-mutated adenomas may represent precursors for ATC, albeit in a limited proportion.130 Homozygousphenotypesatcodon72ofTP53havebeenidentified as potential risk factors for developing ATC.131
The co-occurrence of TP53 mutations with other genetic alterations is common in ATC.Such combinations,like frameshiftinsertionsinPTENandTP53,havebeenassociated with brain metastasis.132 TP53 and TERT mutations are morefrequentinATCcomparedwithangiosarcomaand PDTC,133,134andTP5mutationwasassociatedwitha shorter survival time.133
ThepreciseroleofTP53mutationsinATCremains elusive.Presently,two primary aspects shed light on this role:i) the functional status of TP53mutations appears to influence theresponse of ATC cellsto evodiamine-induced apoptosis and \mathsf{G}_{2}/\mathsf{M} arrest.135 Gain-of-function TP53 mutations havebeen linked toincreased galectin-3 expression, fostering chemoresistance in ATC.136 Conversely,loss of TP53functionseemstofacilitatethetransitionfrom BRAFV600E-harboring PTC to ATC in vivo.137 In comparison to PTC, ATC exhibits higher levels of a-L -fucosidase-1 (FUCA1), regulated in part by TP53 status,and lower levels of fucosyltransferase-8,resultinginelevatedfucoselevelson cell surface glycans, contributing to ATC aggressiveness.138 ii) TP53 displays intricate interactions with various proteins in ATC.It plays a role as a functional interactor of sox2, influencing ATC stemness regulation.139 Mutant TP53 (G199v) was observed to enhance resistance to apoptosis by suppressing STAT3 in the KAT-18 ATC cell line.140 Notably,TP53 overexpression counteracts the heightened expressionofmini-chromosomemaintenanceprotein7 (MCM7), which is closely associated with tumor malignancy in ATC.141 Furthermore, in vitro studies indicate that decreased junctional adhesion moleculeA(JAM-A) levels in ATC alleviateaggressivenessthrough thephosphorylation of TP53 and 65\mathsf{K}3\mathsf{α}/\upbeta pathways.142
Wnt
TheWnt signalingpathwayorchestratescellularresponses viaextracellularWntsignalsbindingtoaco-receptoronthe cellmembrane,consistingofafrizzledfamilymemberand a low-density lipoprotein receptor-related protein (LRP) family member, and intracellular components (destruction complex),including glycogen synthase kinase 3 beta (\mathsf{G S K3}\upbeta) ,caseinkinase 1alpha (\mathsf{C K1}α) ,axis inhibitionprotein (AXIN), and adenomatous polyposis coli (APC).143 In the absenceofWntsignals,thedestructioncomplex phosphorylates \upbeta -catenin,marking it for ubiquitylation and subsequentproteasomal degradation,thereby deactivating Wnt target genes.144 However, upon Wnt signal binding to the co-receptor,inhibition ofthe destruction complex ensues,elevating \upbeta -cateninlevelsandactivatingWnttarget genes. 144
TheWntsignalingpathway ispivotal inregulating adult stem cell homeostasis and tissue regeneration,and has implications in thedevelopment of ATC.145Analysis of a JapaneseATCcohortidentifiedmutationfrequenciesof 4.5% for \upbeta -catenin, 9.0% forAPC,and 81.8% for AXIN1,with observed overexpression of Wnt target genes,cyclin D1 (27.3%) and c-myc (59.1%) .146 The abnormal spindle-like microcephaly-associatedprotein(ASPM)was foundto expediteATCprogressionbymodulatingtheWnt/ \upbeta -catenin signaling pathway.147Additionally,hyper-activation of the Wntsignalingpathwaywasassociatedwithresistanceto artemisinin,whichwasovercomebytheWntsignalinginhibitor, pyrvinium pamoate.148 However, a comprehensive understanding ofWntsignaling'sroleinATCremains limited.
Studiesinvolvingtherapeuticinterventionstargetingthe Wnt/ \upbeta -cateninpathwayinATChaveshownpromise.A conditionally replicative adenovirus(named“HILMI")targeting this pathway demonstrated therapeutic efficacy.149 Furthermore,ellagicacidwasfoundtoinhibitATCinvitro by impeding the Wnt/ \upbeta -catenin and PI3K-AKT pathways.150 More comprehensiveresearchfocusing ontargetingtheWnt signalingpathwayinATCtreatmentiswarranted.
Mitochondrialmetabolism
Abnormalitiesinmitochondrialmetabolismplayapivotal role in the pathogenesis and progression of TC,rendering mitochondrial metabolism an enticing therapeutic target for combatting ATC.151 ATC presents distinctive features in mitochondrialmetabolism,with twokey markers,monocarboxylatetransporter1(MCT1)andoutermitochondrial membrane member 20 (TOMM20),being significantly upregulated in ATC compared with non-cancerous thyroid tissue.152 Expression of two mitochondrial enzymes, serine hydroxymethyltransferase-2 (SHMT2) and methylenetetrahydrofolate dehydrogenase2(MTHFD2),correlates with lower thyroid differentiation scores and adverse clinical outcomes in ATC patients.153 Notably, inhibition of SHMT2 disruptsmitochondrialrespiration,exhibiting therapeutic potential in ATC treatment.153 The hyper-activation of mitochondrial one-carbonmetabolism inATC underscores its significance in nucleotide and glycine synthesis.154 Furthermore,compared with PTC or normal thyroid tissue, ATCcellsinducethereleaseofneutrophilextracellularDNA traps associated with mitochondrial reactive oxygen species production.155 Although the precise role of mitochondrialmetabolisminATCtumorigenesisawaitsfull elucidation,targeting mitochondrial metabolism offers a noveltherapeuticavenueforATCmanagement.
Twofacets ofmitochondrial metabolism hold promisein this regard. One is mitochondrial-mediated apoptosis,a focus of intense research as a promising strategy for targeting mitochondrial metabolism.Various agents have demonstratedefficacyinblockingATCcellproliferationby promoting mitochondrial-mediated apoptosis, including 5F,156 diallyl sulphide (DAS),157 and niclosamide.158 Berberine blocked ATC cell proliferation by inducing mitochondrial-mediatedapoptosis andinhibitedmigrationvia MAPK and PI3K-AKT signaling pathways,159 while diallyl trisulfide(DATS)wasfoundtoinducemitochondrial-mediated apoptosisbytriggeringDNAdamagein8505CATCcell line.160 Capsaicin induces mitochondrial calcium overload andsubsequentmitochondrial-mediatedapoptosisinATC cellsby targeting transientreceptorpotentialvanilloid type 1 (TRPV1).161 Bortezomib (proteasome inhibitor) and TRAIL synergistically inhibitedATCcellsbymitochondrialmediated apoptosis.162 The other facet is the mitochondrial membranepotential,emerging as anotherpotentialtarget within mitochondrial metabolism.Two agents,mitotane163 andsodiumorthovanadate,164impededATC cellproliferationbydisruptingmitochondrial membranepotentialand inducing apoptosis.Silencing of MAPK-associateddeath domain-containingprotein(MADD)correlates withreduced mitochondrial membrane potential,165while a combination ofMADD-siRNA and TRAILexhibits therapeutic efficacy in TRAIL-resistant ATC models.166
Additionally, three mitochondrion-target agents aimed atother aspectsofmitochondrial metabolism,artemisinin, artesunate,and ruxolitinib,,arehopeful.Artemisinin inhibits the mitochondrial respiratory chain proteins in CAL62 and BHT-101 ATC cell lines, and CAL-62 cells show drug resistance to artemisinin by blocking pyruvate dehydrogenase.167 Artesunate, the derivative of artemisinin,168 blocks growth andpromotes apoptosis inchemo-resistantKAT-4 ATC cells by impeding mitochondrial functions without affecting glycolysis and acts synergistically with Dox.169 Ruxolitinib promoted apoptosis and pyroptosis in ATC by blockingdynamin-relatedProtein1(DRP1)-mediated mitochondrial fission.170 More comprehensive research focusing ontargetingmitochondrialmetabolisminATC treatment is warranted.
Targetingmitochondrialmetabolismalsoamplifiesthe efficacyofchemotherapyforATC.Atovaquonesignificantlyaugmentstheanti-proliferativeeffectofDoxin vitrobyblockingmitochondrialrespiration and STAT3,171 and combined treatment with octreotide and cisplatin blockedproliferationandinducedmitochondrial-mediated apoptosis in the side population cells of ATc.172 Besides,thecombinationofphotodynamictherapyand carboplatinshowsatherapeuticeffectonATCby breakingmitochondrialmetabolism.Thecombinationof photodynamic therapyandcarboplatinsynergistically enhancedmitochondrialmembranedepolarizationand induced mitochondrial-mediated apoptosisin the FRO ATC cell line.173 In vivo studies validated the synergistic effect of carboplatin and photodynamic therapy on mitochondrialmetabolismandshowedthatthiscombination blocked the expression of EGFR and PI3K while activating PTEN.174 Further investigations are warranted tofully elucidate thevalue of targeting mitochondrial metabolism in enhancing the efficacy and safety of chemotherapy for ATC.
Targeted therapyforATC
Effect and limit of trimodal therapy
All ATC cases are categorized as TNM stage IV (IVA-IVC).175 The standard treatment, known as trimodal therapy, encompasses surgery,chemotherapy,and external beam radiotherapy.175
Trimodal therapystands asa cornerstoneincombatting ATC.Patientsundergoingmultimodaltherapyexperienced a prolonged m0s of 21 months (range,5.8-44),distinctly surpassing those on palliative therapy (mOs, 3.9 months; range, 2.7-5.3)( \mathsf{H R}\ =\ 0.32 P=0.0006 0.176 Aggressive multimodaltherapyledtoaremarkable60-monthmOSfor patients with locoregionally confined ATC,with 50% of casesaliveandfreefromcancer(follow-upduration {>}32 months).177 when compared, patients subjected to trimodaltreatmentdemonstratedanextendedmOsof22.1 months, surpassing those with dual therapy involving external beamradiotherapy andchemotherapy (\mathsf{m o s}=6.5 months; \ P\ =\ 0.0008) .178Radiotherapy doses >=60 Gy correlatedwithimprovedlocoregionalprogression-free survival (\mathsf{H R}\ =\ 0.135 ., {\cal P}=0.001 )andOs (\mathsf{H R}\ =\ 0.487 B P~=~0.004) ,while trimodal therapy itself was linked to enhanced locoregional progression-free survival (\mathsf{H R}=0.060 ,, P=0.017 .179
However,trimodal therapy revealslimitations across differentstages ofATC.Conventionalchemotherapyand radiationtherapyyieldnoaddedbenefitformoststageIVA patients but do extend survival for IVB patients.180 The differencein \mathsf{m o s} betweenthemultimodalandpalliative therapy groups was notable in stage IVB patients (22.4 vs. 4 months; \mathsf{H R}=0.12 , 95%C1 :0.03-0.44; ±b{P}=0.0001 ,butnot in stage IVC( (\mathsf{H R}\ =\ 1.15 ., 95%C1 : 0.4-3.2; ±b{{\cal P}}=0.78 .176 Trimodal therapy prolonged the mOS of stage IVA/B patients compared with surgery alone(25 vs.3 months; P=0.04_{.} ),yetitexhibitednosignificanteffectonthemOS ofstageIvCpatientscomparedwithdebulkingprocedures (6 vs. 7 months; P=0.25 .181while trimodal therapy improvesthesurvivalofregionallyconfinedATCpatients,it cannot effectively control advanced metastatic ATc.182 Challenges in trimodal therapy will be discussed later.
Due to the constraints of trimodal therapy,targeted therapyhasprogressivelyemergedasacrucialaspectof ATCtreatment.TheactivationofeitherRAS-MAPK-ERKor PI3K-AKT-mTOR pathway is mutually exclusive in ATC,and inhibiting_eitherpathwayenhancessensitivitytochemotherapy.183Dualinhibition of B R A F^{\mathsf{V}600E} and MEK significantly reduces tumor size, extent of surgery, and surgical morbidity score.184 Targeted therapy is associated with a favorable OS,and the combination of surgery,radiotherapy,and targetedtherapy (\mathsf{m o s}\:=\:34.3 months; 6- month survival rates = 77.8%) proved most effective.185 Factors linked to improved OS include targeted therapy ⟨{\mathsf{H R}}=0.49 , 95%C1 : 0.39-0.63; style P<0.001 ),immunotherapy combinedwithtargetedtherapy (\mathsf{H}\mathsf{R}\ =\ 0.58 18 95%C1 0.36-0.94 , ±b{P}=0.03 ), and surgery accompanied by BRAFtargetedtherapy \begin{array}{r l r}{(\mathsf{H}\mathsf{R}}&{{}=}&{0.29}\end{array} 5 95%C1 :0.10-0.78; ±b{P}~=~0.02) .186 The discussion on advances in targeted therapy for ATC will follow.
OverviewofcurrentATCtargetingtherapyand immunotherapy
In the current treatmentguidelineforATC,targetedtherapy was recommended for stageIVB-IvCpatients.175For stage IVBcases,dabrafenib and trametinib were recommended as the B R A F^{\mathsf{V}600E} mutation was detected. This combination granted patients for further trimodal therapy. The therapeuticflowofstageIVCcases shared thissolution withstageIVcaseswhencarryingRAFV600Emutation,and immunotherapy targetingPD-1/PD-L1 was recommended underthehighPD-L1expressionortumormutational burdenhigherthantenmutations.However,except dabrafenib-trametinibcombination,therecommended clinicalapplicationofagentstargetingMAPKandPI3K-AKTmTOR signaling pathway was still limited,and immunotherapy was ranked in the conditionalstrength of recommendationwiththelowqualityofevidence.
ThefollowingsectionswilloutlinetheadvancesinATC targeted therapy andimmunotherapyfrom dabrafenib to other candidate agents indetail.Wefoundthat clinical studiesandcasereportsweremainlyconcernedwiththe results of targeting_ MAPK signaling pathway and RAF (especially B R A F^{~600E} ), like lenvatinib, dabrafenib, and dabrafenib-trametinib,and immunotherapy targeting PD1/PD-L1.Reports about drugs aimed at the PI3K-AKT-mTOR signalingpathwayandother targetsmainlyshowedtheir therapeutic potential experimentally, and more clinical stepswerewarrantedfortheirefficacyandsafety.Additionally,theglobal ongoing clinicaltrialsforATCtreatment werealsocollectedandlistedinTable7.Theseclinical trialscanprovidemorecandidateagentsforimprovingthe future prognosis and life quality of ATC patients.
Targeting MAPK signalingpathway
Targeting RTKs
Anlotinib.AsaVEGFR2inhibitor,anlotinibshowedan anti-tumor effect invitro.Anlotinibblocked the angiogenesis in ATC by targeting the CXCL11-EGF-EGFR positive feedback loop.187 Autophagic blockade enhanced anlotinibmediated ferroptosis in ATc.188 A cohort of ATC patients receivinganlotinib-basedchemotherapy (n=25 had 25.1- weekmedianprogression-freesurvivaland96.0-weekmediandisease specificationsurvival,andthe objective remissionrateanddiseasecontrolratewere 60% and 88% , respectively.189
Apatinib.Apatinib,a VEGFR2 inhibitor,induced both autophagy.andapoptosisbyinhibitingAKT-mTOR pathway.190 It led a 93-year-old female ATC patient to have stable disease with a bestresponse of 19.7% of the primary lesion,sustainedshrinkageoftumorandmetastaticlymph node, and 41-week Os.i91 The combination of ^{125}\dot{I} and apatinib causeda significantreduction in tumor sizein49- year-old female ATC patients.192 In a phase Il trial of apatinib (n~=~17) ,thediseasecontrolratewas 88.2% ,but treatmentwasterminatedin 23.5% of patients due to intolerable toxicity.193 Interestingly, the combination of apatinib andmelittin showed anextra anti-tumoreffectvia caspase-1-GSDMD and caspase-3-GSDME pyroptosis.193
Lenvatinib.Lenvatinib,a multi-tyrosinekinase inhibitor targeting VEGFRs,PDGFRs,and FGFR1,demonstrated significantanti-proliferativeeffectsinATC.Itexhibited promising inhibitory actions on tumorgrowth194andbrain metastasis,195 particularlybyimpedingangiogenesis. Notably, lenvatinib displayed inhibitory effects on BRAFWT/ V600-ATC cells, especially in the presence of pericytes enriched in ATC samples.196 However, no significant correlation was observed betweenVEGFR2 expression in tumor tissue andclinicalresponse tolenvatinib among ATC patients.197
Thedevelopmentofalenvatinib-loadednanocomposite showed therapeutic potential in vivo.198 Combination therapiesinvolvinglenvatinibwithotheragentslike DOX,199 HNHA (a histone deacetylase inhibitor),200 IRAK1/4 Inhibitor1201MEK inhibitors202PTX203andvinorebine204 demonstrated synergistic effects,surpassing the individual agents’impact.Combinationswithanti-PD-1/PD-L1therapy revealed a reduction in polymorphonuclear myeloidderivedsuppressorcellswhilecombininglenvatinibwith anti-Gr-1antibodyshowedanexpandedmyeloid-derived suppressorcell population alongwithenhanced anti-tumor effects compared with lenvatinib monotherapy.205
ClinicalstudiesinvolvinglenvatinibinATCaredetailed in Table 2,showcasing its promising potential in specific cases. Notably,a 68-year-old IVB ATC male patient experienced a 21-month survival post-trimodal treatment,206 anda54-year-oldwomanwithpaucicellularmetastaticATC showed an 18-monthpartial tumor response inlung metastasisafterreceivingalenvatinib-pembrolizumab combination.207
Despiteitspromise,thesafetyand efficacyof lenvatinib areunderscrutiny.Apartfromtheadverseeventslistedin Table2,instanceslikeposteriorreversibleencephalopathy syndrome in a 66-year-old female ATCpatient208 and bilateral pneumothorax in an ATC patient with lung metastasisduringlenvatinibtherapyhavebeenreported.209 Furthermore, the partial response defined in Response Evaluation Criteria in Solid Tumors(RECIST)remainselusiveinsomecasesaftersuccessfullocalcontrolof metastatic ATC (n=3) .210 Notably, a meta-analysis highlighted common adverse events such as hypertension (56.6%) ,proteinuria (32.6%) , and fatigue" (32%) .211 Addressing thesafetyandefficacyconcerns oflenvatinib willbeimperative infuture studies.
Pazopanib.PazopanibtargetsseveralRTKs(VEGFRs, PDGFRβ,and FGFR1).It inhibited the proliferation of primary human ATC cells,212 and the combination of pazopanib and other agents (like \mathsf{P T X}^{213} or topotecan214) showed more synergisticallyanti-tumoreffect.However,results from clinical trials of pazopanib in ATC were disappointing. In a phase 2 trial ofpazopanibinATC (n=15 ),therewere no confirmed RECIST responses,and treatment was discontinued because of severe adverse events.215 In another phase2trial (n\ =\ 71 ),therewasnodifferenceinmOS between thepazopanib group(5.7months; 95%C1 :4.0-12.8 months) and placebo group (7.3 months; 95%C1 :4.3-10.6 months) (\mathsf{H R}=0.86 95%C1 :0.52-1.43;one-sided log-rank {±b P}=0.28 .216
Sorafenib.As amulti-targetinhibitor,sorafenibblocks not only RTKs(VEGFRsand PDGFR)but also RAF-1.Sorafenibblockedtheproliferationofvascularendothelial cells stimulated by ATC cells.217 The combinations of sorafeniband otheragentshavebeenexaminedinATC.A combination of sorafenib and metformin218 or H N H A^{219} showedasynergisticallyanti-proliferativeeffectonATC cells andcancerstem cells.Sorafenibcanalsosynergize with other drugs (adavosertib,220 centrinone,221 quinacrine,222 and withaferin \mathsf{A}^{223} ) in blocking the tumor growth of ATC. Besides, the sorafenib-radiation-HNHA224 or sorafenib-radiation- *\mathsf{P T X}^{225} therapy showed therapeutic potential on ATCin vivo.Clinical studies of sorafenib inATC are listed inTable 3.
Sunitinib.SunitinibblockedVEGFR2andPDGFRβ,butit exhibited no effect on the proliferation of ATC cells.217 Combinationofsunitinibandirinotecanshowedsynergistic anti-tumor activity on ATC in vitro and in vivo.226Clinical applications ofsunitinibin treatingATCwerelimited.The combination of radiotherapy,chemotherapy,and sunitinib leda49-year-oldfemaleATCpatienttohaveacomplete response andremains withoutevidence ofdisease more than 18 months after diagnosis,227 and it also caused a reductionintumorsize andcompletemacroscopicresponse in a 79-year-old male ATC patient unfit for systemic chemotherapy treatment.228
Vandetanib.AsaneffectiveinhibitorofVEGFR2/3and EGFR,vandetanibinhibitedangiogenesisanddevelopment ofATCinvivoandinvitro.229,230othlenvatinibandvan detanibblockedtheproliferationandpromotedapoptosis in primary ATC cells,231 and vandetanib showed a more inhibitoryeffectonATCcellproliferationandangiogenesis than sorafenib in vivo.32 However, more clinical trials of vandetanibarenecessarytocheckitsefficacyandsafety.
Targeting RAF (BRAF, BRAFV600E)
Dabrafenib.Dabrafenib demonstratedeffectiveinhibition of CRAF and B R A F^{\mathsf{v600E}} ,inducing G0/G1-arrest by reducing MEK/ERK phosphorylation,presenting a promising avenue for ATC treatment.233 Studies have unveiled the synergistic potential of dabrafenibin combination therapies for ATC. Notably,thecombinedtherapyofdabrafenibwithtrametinib(MEK inhibitor) isrecommended,especially for managing stageIVB/IVCBRAFV600E-positiveATC.175Additionally, invitroobservationsindicatetheanti-tumoreffectsof dabrafenibinconjunctionwithother_agentssuchas axitinib,234e epigallocatechin-3-gallate,235 erlotinib,236 and melatonin.237 However, further independent replications areessentialtovalidatethesafetyandefficacyofthese experimentalcombinationtherapies.Clinicalstudiesand casereports ofdabrafenib inATC are detailed inTables3 and 4,respectively.Despiteitspotential,theefficacyof dabrafenibrequires enhancementdueto severalconfining factors affecting its visceral distribution,including drug lipophilicity,rapid target dissociation,and high albumin binding.238 Moreover, the emergence of {\mathsf{R A C1}}^{\mathsf{P3\bar{4}R}} mutation has been linked to dabrafenibresistancein the anaplastic transformation of PTC.239 Strategies targeting the reactivated RAS signaling pathway, such as SHPO99 (a SHP2 inhibitor),have shown potential inreversing resistance to dabrafenib in ATC.240 However, a comprehensive explorationintothemechanismsofresistance todabrafeniband relatedsolutionsisyettobeundertaken.
PLX4720. PLX4720, a Specific BRAFV600 inhibitor, restrained the development of ATC in vivo.241 The same effectwasobservedinvivowhencombinedwiththyroidectomy.242 Combination of PLX4720 and anti-PD-1/PD-L1 antibody improved the survival of the murine ATC model,243 and the combination of PLX4720 and oncolyticherpes simplexvirusenhancedtheanti-tumoreffectwithPD-1 blockade.244 More clinical studies are suggested for the potentialtherapeuticeffectofPLX4720.
Table 2 Efficacy and safety results from clinical studies of lenvatinib in anaplastic thyroid cancer. | |||||||||
Design | Cases | PR (%) | CR (%) | SD (%) | PD (%) | mPFS | mOs | Adverse events | Reference Makoto et al407 |
Phase 2 clinical trial | 17 | 24 | 0 | 71 | 6 | 7.4 months (95%Cl: 1.7-12.9) | 10.6 months (95%Cl: 3.8-19.8) | Decreased appetite (82%), hypertension (82%), fatigue (59%), nausea (59%), and | |
Phase2clinicaltrial | 34 | 2.9 | 0 | 0 | 0 | 2.6 months (95%Cl: 1.4-2.8) | 3.2 months (95%Cl: 2.8-8.2) | proteinuria (59%) Hypertension (56%), decreased appetite (29%), fatigue (29%), and stomatitis (29%) | Lori et al408 |
Phase 2 clinical trial | 52 | 9.5 | 2.4 | 61.9 | 21.4 | NA | 5.0 months (95%Cl: 2.7-6.9) | Loss of appetite (48.0%), fatigue (48.0%), hypertension (44.0%), and palmar- plantar erythrodysesthesia syndrome (26.0%) | Takuya et al409 |
Pilot study | 12 | 25 | NA | i)NoFGFR4intensity: 0.5months;ii)weak FGFR4 intensity: 3.2 months (95%CI: 1.1—NE); iii) moderate FGFR4 intensity: | NA | NA | Haruhiko et a(410 | ||
Retrospective study | 23 | 17.3 | NA | 26.1 | 30.4 | NA | 166 days | Hypertension (91%), general fatigue and anorexia (65%), proteinuria(61%),and tumor-skin fistulas | Hiroyuki et al411 |
Retrospective study | 5 | 60 | 0 | 40 | 0 | NA | 165 days | (26%) Hypertension (80%), diarrhea (40%), fatigue (80%), and decreased appetite | Satoshi et al412 |
Retrospective study | 18 | NA | NA | NA | NA | NA | 230 days (range: 64 -839) | (80%) NA | Soo Young et al413 |
Retrospective study | 14 | 29 | 0 | 64 | 7 | 5.7 months (95%Cl: 2.2-8.3) | 6.7 months (95%Cl: 3.0-8.4) | Hypertension (86%), lossofappetite(86%), fatigue or asthenia | Mijin et a(414 |
33.3 | NA | 52.8 | 11.1 | 3.5 months (95%Cl: 2.3-5.37) | 4.77 months (95%Cl: 3.07-6.50) | (79%), proteinuria (79%), and hypothyroidism (79%) loss of appetite (50.0%), cavitation (47.2%), proteinuria | Hypertension (80.6%), Hiroyuki et al415 | ||
2.6 months (95%Cl: | 3.9 months (95%Cl: | cutaneous fistula (33.3%), and tracheal fistula (25.0%) Hypertension (70%), pain (70%), fatigue | Priyanka et al416 | ||||||
Observationalstudy | lenvatinib) 124 | 41 | 2.9 | 32.4 | 23.8 | NA | 101.0 days (95%Cl: | (70%), mucositis (50%), and hand-foot skin reaction (30%) Hypertension (70.2%), Shunji et al417 proteinuria (29.8%), | |
80.0-130.0) | palmar-plantar erythrodysesthesia syndrome (25.8%), and hematological |
Table3 Agents | Design | Cases | PR (%) | CR (%) | SD (%) | PD (%) mPFS | EicacyandsaretyresutsroctmcatstudlesorotiertargettherapiesToranaptastic tyroldcancer. | mOs | Adverse events | Reference |
Dabrafenib + trametinib | Retrospective study | 17 | 70.6 | 11.8 | 0 | 17.6 | 4.7 months (95%Cl: 1.4-7.8) | 6.9months(95%Cl: 2.46-NE) | Breathlessness (42%), fatigue (36%), decreased appetite (30%), | Lorimer et a(418 |
Dabrafenib + trametinib | Retrospective study | 27 (9 treated with dabrafenib | 33.3 | 0 | 0 | 270 days | 475 days | (24%), and nausea (24%) Recurrentfever (11%), fever and hypertension | Tiago et al419 | |
Dabrafenib + trametinib | Retrospective study | 5 | 20 | 40 | 20 | 20 | NA | NA | hypertension (22%) Anorexia (80%), nausea (60%), fatigue (40%), hepatotoxicity | Fernanda et al420 |
Dabrafenib + trametinib | Phase 2 clinical trial | 16 | 63 | 6 | 19 | 13 | 6.7 months (95%Cl: 4.7-13.8) | 14.5 months (95% CI: 6.8-23.2) | bleeding (20%) Fatigue (38%), pyrexia (37%), and nausea (35%) | Vivek et al421,422 |
Sorafenib | Phase 2 clinical trial | 20 | 10 | NA | 25 | 10 | 1.9 months (95%Cl: 1.3-3.6) | 3.9 months (95%Cl: 2.2-7.1) | Rash/ desquamation (65%), fatigue (60% ), hypoglycemia (30%),mucositis | Panayioti et al423 |
Sorafenib | Phase 2 clinical trial | 10 | 0 | 0 | 40 | 0 | 2.8 months (95%Cl: 0.7-5.6) | 5.0 months (95%Cl:Palmar-plantar 0.7-5.7) | (25%) erythrodysesthesia (50%), alopecia (30%), hypertension (50%), and | Yasuhiro et al424 |
Vemurafenib | Phase 2 clinical trial | 7 | 14 | 14 | 0 | 57 | NA | NA | diarrhea (30%) NA | David et al425 |
Reference | Age (years) | Gender | Stage | CTR | RTR | Surgery | Usage of dabrafenib | Outcome | |
Rishi et al426 | 47 | Female | IVB | CPL, PTX, CDDP, DOX | + | + | Dabrafenib (oral, 150 mg twice daily) + trametinib (2 mg daily) | 9-month clinical and radiologic response of metastatic lung nodules 3-month metabolic | |
Annette et al427 | 49 | Female | IVB | PTX | + | Dabrafenib (150 mg twice daily) | response in all sites of disease and a radiologically RECIST partial response | orief summary of anaplastic thyroid cancer | |
Annette et al427 | 67 | Male | IVB | + | Dabrafenib (150 mg twice daily) | 11-week reduction in tumor-related symptoms and size of palpable thyroid mass Pre-operative: a | |||
Jennifer et al428;429 | 60 | Male | IVB | PTX + CPL | + | + | Dabrafenib (oral, 150 mg twice daily) + trametinib (2 mg daily) 十 pembrolizumab (200 mg, IV) | significant partial response, and the tumor was deemed resectable Post-operative: disappeared nodules, and excellent quality of life | |
Jennifer et a(428 | 48 | Female | IVB | PTX ± CPL | + | + | Dabrafenib (oral, 150 mg twice daily) + trametinib (oral, 2 mg daily) | Pre-operative: 1-month >50% tumor reduction, improved dysphagia and dyspnea Post-operative: no evidence of disease progression for one year until bone metastases | |
Jennifer et al428 | 69 | Female | IVB | PTX ± CPL | + | + | Dabrafenib (oral, 150 mg twice daily) + trametinib (oral, 2 mg daily) | Pre-operative: resolved dyspnea and resume full oral diet Post-operative: significant reduction of the primary tumor and lymphadenopathy as well as separation from | |
Jennifer et al428 | 58 | Male | IVB | PTX ± CPL | + | + | Dabrafenib (oral, 150 mg twice daily) + trametinib (oral, 2 mg | the carotid Resolution of dysphagia and dyspnea, resumption of an oral diet, and no (continuedonnextpage) |
Table 4 (continued) | ||||||||
Reference | Age (years) | Gender | Stage | CTR | RTR | Surgery | Usage of dabrafenib | Outcome |
Jennifer et al428 | 73 | Female | IVC | daily) + pembrolizumab (200 mg, every 3 weeks) Dabrafenib (oral, 150 mg twice daily) + | disease progression (at least 20 months from diagnosis) Pre-operative: near- complete metabolic | |||
Jennifer et al428 | 46 | Female | IVC | PTX ± CPL | + | daily) + pembrolizumab (2 mg/kg, IV) Dabrafenib (150 mg twice daily, oral) + trametinib (oral, 2 mg | Post-operative: no evidence of disease progression Pre-operative: marked reduction of primary disease and resolution of metabolically active | |
Maria et al430 | 74 | Female | IVC | PTX | Dabrafenib + trametinib | Post-operative: no disease progression (12 months from diagnosis) Pre-operative: 11-month response (a decrease in the size of primary tumor, an almost | ||
NA | + | Dabrafenib (150 mg twice daily) + | Post-operative: 9-month no evidence of progression Pre-operative: strong partial response (marked reduction in the size of | |||||
Johnathan et al432 | 67 | Male | NA | PTX, 5- fluorouracil, | + | + | Dabrafenib + trametinib | cervical adenopathy) Post-operative: NA Pre-operative: decreased tumor size Post-operative: 17- |
Lin et a[433 | 61 | Female | NA | hydroxyurea | Anlotinib (10 mg, once a | month no evidence of disease Pre-operative: |
Yuntao et al435 Elisabeth et a(434 | 73 | Male IVB | day, 2 weeks on/1 week off) + sintilimab (200 mg, every 3 weeks) + dabrafenib (75 mg, twice daily) + (20 mg, daily) + | pathological complete response Post-operative: remission with an excellent quality of life Pre-operative: residual | ||||
local tumor without lymphadenopathy, | ||||||||
trametinib (2 mg, daily) Pre-operative: lenvatinib | decreased initial tumor | A brief summary of anaplastic thyroid cancer | ||||||
dabrafenib (150 mg, twice daily) + trametinib (4 mg, daily) Post-operative: lenvatinib and | infiltration, and extensive regressive necrosis in the primary tumor | |||||||
pembrolizumab after local recurrence | Post-operative: 8-month | |||||||
65 | Female IVC | 一 | Pre-operative: | stable disease Pre-operative: shrink of | ||||
dabrafenib (oral, 150 mg twice daily) + | primary tumor, separation from the | |||||||
trametinib (oral, 2 mg daily) + sintilimab (IV, 200 mg, every 3 weeks) | carotid, and nearly | |||||||
disappeared metastatic | ||||||||
lung disease | ||||||||
Post-operative: | Post-operative: 12- month no evidence of | |||||||
sintilimab (IV, 200 mg, | disease | |||||||
every 3 weeks) | ||||||||
Treatment | Design | Cases PR (%) | CR (%) | SD (%) | PD (%) | mPFS | mOs | Adverse events | Reference | |
Pembrolizumab + docetaxel/Dox + RTR | Phase 2 clinical trial | 3 | 0 | 0 | 0 | 100 | NA | 2.76 months | Pneumonitis (67%), respiratory failure (67%), laryngeal edema | Ashish et al436 |
Spartalizumab | Phase 2 clinical trial | 42 | 12 | 7 | 。 | 0 | 1.7 months (95%Cl: 1.2-1.9) | 5.9 months (95%Cl: 2.4-NE) | infection (33%) Diarrhea (12%), pruritus (12%), fatigue (7%), and pyrexia (7%) | Jaume et al437 |
Tremelimumab + durvalumab + RTR | Pilot study | 12 | 0 | 8.3 | NA | NA | 104 days (range: 12-622) | Fatigue (83%), cough (75%), dysphagia (67%), constipation (58%), edema | Nancy et al438 | |
Pembrolizumab + lenvatinib/ trametinib/ dabrafenib and | Retrospective study | 12 | 42 | 0 | 33 | 25 | 6.93 months (95% CI: 1.7-12.15) | 2.96 months (95% CI: 2.2-3.7) | Fatigue (91.7%), anemia (83.3%) hypertension (66.7%), and dry mouth (66.7%) | Priyanka et al439 |
Lenvatinib + pembrolizumab | Retrospective study | 6 | 66時 | 0 | 16 | 16 | 16.8 months | 17.3 months | Hypertension (83%), anorexia (33%), diarrhea (33%), fatigue (33%), and proteinuria (33%) | Christine et al440 |
pembrolizumab/ nivolumab | Retrospective study | 1315 | NA | 23 | NA | 1.9 months (IQR: 9.0) | 3.9 months (IQR: 15.7) | Endocrinopathies (23%), rash (15%), nervous disorder (15%), and musculoskeletal disorder (8%) | Alycia et al441 |
Reference | Age (years) | Gender | Stage | CTR | RTR | Surgery | Immunotherapy | Effect |
Elisabeth et al434 | 57 | Male | IVC | CPL, PTX | 一 | + | Lenvatinib (20 mg, daily) 十 pembrolizumab (200 mg) | Pre-operative: regression in size and disappearance of the small bilobular lung |
Revathi et al442 | 62 | Male | NA | DOX, CDDP, PTX | + | Vemurafenib + nivolumab | rief summary of anaplastic thyroid cancer Post-operative: 11- month stable disease Vemurafenib only: mixed Vemurafenib + nivolumab: 20-month | |
Marra Jai et al443 | 53 | Male | IVC | DOX | + | Pembrolizumab (200 mg) | and clinical remission Reduction in total tumor | |
Ammar et al44 | 49 | Male | NA | DOX | + | + | Pembrolizumab | burden Diffuse bone metastasis and a new liver lesion |
Ammar et al44 | 61 | Female | IVC | DOX, CPL, PTX | + | + | Dabrafenib (oral, 150 mg, twice daily) + trametinib (oral, 2 mg, | Shrinkage in the size of lung metastases and 10- month stable disease |
Luming et a(445 | 55 | Female | IVB | 一 | + | + | daily) + pembrolizumab Apatinib (250 mg, daily) + camrelizumab | Local recurrence, but the 11-month clinical |
Lin et a[446 | 67 | Female | IVB | 一 | + | Sintilimab (200 mg, every 3 weeks) + anlotinib (oral, 12 mg, once daily, 2-week on/1- | stable stage RECIST partial response and an excellent quality of life | |
Shyang-Rong et a[447 | 58 | Male | IVC | DOX | + | + | week off) Pembrolizumab (200 mg, every three weeks) + lenvatinib (20 mg/day and 10 mg/day | Transient decrease of pulmonary nodules and new spinal metastases |
Shyang-Rong et al447 | 71 | Male | IVC | alternatively) Pembrolizumab (50 mg, twice)+lenvatinib (oral, 20 mg/day and | Neck tumor and lymphadenopathies and multiple enlarged | |||
Shyang-Rong et al447 | 59 | Male | IVB | DOX | 10 mg/day alternatively) Spartalizumab (400 mg, every 4 weeks) | pulmonary metastases Unchanged size of neck mass remained, and 23 |
Reference | Age (years) | Gender | Stage | CTR | RTR | Surgery | Immunotherapy | Effect |
Shyang-Rong et al447 | 60 | Female | IVC | + | + | i) Sorafenib (400 mg once daily for 2 weeks + 600 mg once daily for another week); ii) pembrolizumab (200 mg) + lenvatinib (10 mg once | month treatment Sorafenib: enlargement of neck mass Pembrolizumab + Lenvatinib: shrinkage of neck and pulmonary nodules | |
Maxwell et a[448 | 60s | Female | NA | CPL, PTX | + | + | daily) i) Nivolumab; ii dabrafenib + trametinib + nivolumab; ii) FS118 (20 mg/kg weekly) | Nivolumab: partial response Dabrafenib + trametinib + nivolumab: 1-month fever, drug-induced liver injury |
+ | + | Pembrolizumab | Complete RECIST tumor regression of both primary and lung metastasis | |||||
Yurou et a[450 | 47 | Female | NA | + | + | Tislelizumab (200 mg, every three weeks) | Partial response and no tumor recurrence |
Title | NCT number | Starting date | Status | Enrolment | Interventions | Organization | Country |
interNational Anaplastic Thyroid Cancer Tissue Bank and Database (iNATT) (iNATT) | NCT01774279 | 2013-06 | Recruiting | 350 | Tissue, blood, and clinical data collection | Velindre NHS Trust | United Kingdom |
Trametinib in Combination with Paclitaxel in the Treatment of Anaplastic Thyroid | NCT03085056 | 2017-03-15 | Active, not recruiting | 13 | Trametinib, paclitaxel | Memorial Sloan Kettering Cancer Center | United States |
Cancer Atezolizumab With Chemotherapy in TreatingPatients with Anaplastic or Poorly Differentiated | NCT03181100 | 2017-07-27 | Active, not recruiting | 50 | Atezolizumab, bevacizumab, cobimetinib, nab- paclitaxel, paclitaxel, | M.D. Anderson Cancer Center | United States |
Thyroid Cancer Nivolumab Plus Lenvatinib Against Anaplastic Thyroid Cancer (NAVIGATION) | NCT05696548 | 2019-07-02 | Active, not recruiting | 51 | vemurafenib Lenvatinib, nivolumab | National Cancer Center Hospital East | Japan |
Study of Cemiplimab Combined with Dabrafenib and Trametinib in People with Anaplastic | NCT04238624 | 2020-01-20 | Recruiting | 15 | Dabrafenib, trametinib | Memorial Sloan Kettering Cancer Center | United States |
Thyroid Cancer Abemaciclib in Metastatic or Locally Advanced Anaplastic/ Undifferentiated Thyroid Cancer | NCT04552769 | 2020-09-10 | Active, not recruiting | 9 | Abemaciclib | Stanford University | United States |
Dabrafenib, Trametinib, and IMRT in Treating Patients with BRAF Mutated Anaplastic Thyroid Cancer | NCT03975231 | 2020-09-14 | Recruiting | 6 | Dabrafenib, trametinib, and intensity- | City of Hope Medical Center | United States |
Pembrolizumab, Dabrafenib, and Trametinib Before Surgery for the Treatment of BRAF- | NCT04675710 | 2021-06-24 | Recruiting | 30 | modulated radiation therapy Dabrafenib, trametinib, pembrolizumab, conventional surgery, intensity- | M.D. Anderson Cancer Center | United States |
Table 7 (continued) | |||||||
Title Mutated Anaplastic | NCT number | Starting date | Status | Enrolment | Interventions modulated radiation therapy, | Organization | Country |
Thyroid Cancer Lenvatinib and Pembrolizumab for the Treatment of Stage IVB Locally Advanced and | NCT04171622 | 2021-11-04 | Recruiting | 25 | and quality-of-life assessment Lenvatinib, pembrolizumab | M.D. Anderson Cancer Center | United States |
Unresectable or Stage IVCMetastatic Anaplastic Thyroid Cancer The Efficacy and Safety of HLX208 in Advanced Anaplastic | NCT05102292 | 2021-12-10 | Active, not recruiting | 25 | HLX208 | Shanghai Henlius Biotech | China |
Thyroid Cancer (ATC) WithBRAFV600 Mutation IMRT Followed by Pembrolizumab in the Adjuvant Setting in Anaplastic Cancer of the Thyroid | NCT05059470 | 2022-02-11 | Recruiting | 35 | Pembrolizumab | M.D.Anderson Cancer Center | United States |
(IMPAACT): Phase II Trial Adjuvant Pembrolizumab After IMRT in ATC Phase Il Trial of Pembrolizumab in Metastatic or Locally Advanced Anaplastic/ | NCT05119296 | 2022-02-15 | Recruiting | 20 | Pembrolizumab (Keytruda) | Stanford University | United States |
Undifferentiated Thyroid Cancer Vudalimab for the Treatment of Locally Advanced or MetastaticAnaplastic Thyroid Cancer or Hurthle Cell Thyroid | NCT05453799 | 2022-07-21 | Recruiting | 54 | Vudalimab | Northwestern University | United States |
PD-1 Inhibitor and Anlotinib Combined with Multimodal Radiotherapy in Recurrent or | NCT05659186 | 2022-12-30 | Recruiting | 20 | Tislelizumab, anlotinib, and radiotherapy | West China Hospital | China |
Metastatic Anaplastic Thyroid Cancer NEO- and Adjuvant Targeted Therapy in Braf-mutated Anaplastic Cancer of | NCT06079333 | 2023-01-01 | Recruiting | 20 | Dabrafenib/ trametinib | Leiden University Medical Center | Netherlands |
ATACT Study) (NEO- ATACT) Efficacy of Pembrolizumab and Lenvatinib in Patients | NCT06374602 | 2024-03-25 | Recruiting | 20 | Pembrolizumab + lenvatinib | Saint Petersburg State University | Russia |
Thyroid Cancer Study of the Rechallenge Concept in Patients With BRAF-positive Anaplastic Thyroid Cancer After | NCT06362694 | 2024-03-25 | Recruiting | 34 | Dabrafenib + trametinib | Saint Petersburg State University | Russia |
Progression on Anti- BRAF Therapy Efficacy of Pembrolizumab and Lenvatinib in Patients with Anaplastic Thyroid Cancer | NCT06374602 | 2024-03-25 | Recruiting | 20 | Pembrolizumab + lenvatinib | Saint Petersburg State University | Russia |
Vemurafenib.Vemurafenib,acting as a specific inhibitor ofBRAFV00exhibited promisingffectsonTCinvitr5 It enhanced TRAIL-induced apoptosis and,intriguingly, promoted self-renewal in ATC cellsby activating the sonic hedgehog pathway.246 Moreover, in vitro studies demonstratedthatvemurafenibincreasedthecytotoxicityof apigenin247 and tunicamycin248 on ATC and displayed synergistictherapeuticeffectswhencombinedwithmetformin.249 Notably, the inhibition of STAT3 demonstrated a reduction in resistance to vemurafenib in ATC.250 A clinical studyofvemurafenibinATCisoutlinedinTable3,whereit exhibited rapid improvements in the condition of ATC patients,significantly supporting subsequent radiation therapy.251 Case reports also indicated that vemurafenib improved symptoms in patients with specific mutations, such as BRAFV600E and mutant-TP53 (\mathsf{c}.550\mathsf{G})\mathsf{A} p.E180K).252 However, outcomes varied, as seen in the case of a51-year-oldmaleATCpatientwho initiallyresponded tovemurafenibbutexperiencedrapidclinicaldeterioration.253 Further clinical investigations of vemurafenib in ATCare warranted to comprehensively evaluateits efficacy and safety in this context.
Otherpotentialtargeting.WhiletargetingRTKandRAS remains a focus in ATC research,investigations targeting other componentswithin theMAPK signaling pathway are gaining importance and warrant further attention.The prospect of targeting RAS is promising for future therapeutic approaches. Combined treatment involving salirasib (a RAS inhibitor)and modifiedcitruspectin demonstrated therapeutic effects in ATC.254 Similarly, sulforaphane enhanced theefficacyofphotodynamictherapyinATCby specifically targeting the MAPK pathway.255 Expanding beyond trametinib, alternate strategies for MEK targeting inATCarebeingexplored.Forinstance,thecombination of PLX51107(aBETinhibitor)andPD0325901 (a MEKinhibitor) showcasedtherapeuticpotentialinATCbytargetingMYC transcription.256 Intriguingly, while dual inhibition of BRAFV60 andMEKfailed toimpedeSW1736ATCcell migration in 2D culture,it significantly reduced SW1736 cell invasion in 3D culture settings.257 Studies focusing on targetingERKinATCareScarce.InhibitionofERKdimerization emerged as a strategy to suppress ERK activation,ultimatelyimpeding theproliferationandmetastasis ofBRAFmutantATc.58Additionally,epigallocatechin--galate exhibited inhibitoryeffects onATC cellproliferationand induced apoptosisbytargetingtheEGFR-ERKpathway and the cyclin B1-CDK1 complex.259
Targeting PI3K-AKT-mTOR signaling pathway
TargetingPI3K
BlockingPI3Kin ATCwas rarely examined.The cytotoxicity of two heat-shock protein 90 (HSP90) inhibitors,17-AAG and herbimycin A,is associated with the suppression of
PI3K-AKT signaling in ATC.260 Nanoparticles loaded 17-AAG andTorin2blockedATCcellgrowthandimprovedmOSof murine ATC models by targeting VEGFR2.261 Dual inhibition of PI3K and PLK1 also induced apoptosis and suppressed tumorgrowthofATCsignificantly.262Metformininhibited thePI3K-AKT-FOXO1pathwayinSW1736and 8305CATCcell lines but failed toregulate AKT in the C643 cell line and phosphorylationstatusofPI3K,AKT,andFOxO1inallthree ATC cellines.263 Combination of metformin and pioglitazone blocks PI3K-Akt-mTOR pathway and up-regulates several tumor suppressorgenes(includingPTEN)inSW1736 and C643 ATC cell lines.264
Targeting AKT
TargetingAKTinATChasbeengraduallytestedinvitroand in vivo.A combination of MK-2206 (AKT inhibitor) and tyrphostin AG1296(PDGFR inhibitor)inhibited the tumor growth of ATC synergistically.265 Combination of baicalein anddocetaxelsignificantlysuppressedproliferationand inducedapoptosisbydown-regulatingapoptoticand angiogenicproteinexpression andblocking ERK andAkt/ mTOR pathways in ATC.266 High iodine promoted ATC cell proliferationvia AKT-mediatedWee1/CDK1 axis,267 and diallyltrisulphidecompromisedthephenotypeofATC cancer stem cells and restored thyroid-specific gene expression of ATC cells by targeting AKT-SOX2 pathway.268 Both berberine269 and salmonella270 activated autophagy andinhibitedATCtumorgrowthbyblockingtheAKT-mTOR pathway.Aself-assemblepeptidedruginhibitedAKT1at thehalfmaximal inhibitory concentration (1mathsf C_{50}) of 18.2\upmu M and 12.4rm{mu M} in 8305C and 8505C ATC cell lines, respectively.271
Targeting mTOR
ThemTORpathwayhas emerged asapotential therapeutic target in ATC.272 Everolimus, an mTOR inhibitor, demonstrated promising effects in ATC in vitro.273 A phase lIl study involvingeverolimus,encompassing33participants (including7ATCcases),revealed twopatients withpartial responseandstablediseasefor17.9and26months, respectively.274 Notably, one patient exhibited a partial response for 27.9months,while two others hadstable disease for 3.7 and 5.9 months, respectively.275 Combining BP-14(a CDK inhibitor) with everolimus revealed a robust synergistic effect in inhibiting theproliferationofFRO, SW1736, and 8505C ATC cell lines.276 Nevertheless, the presence of a nonsense mutation in TSC2 (\mathsf{T S C}2^{\mathsf{Q1178\star}}) enhanced sensitivity to everolimus,while anmTOR mutation (\mathsf{m}\mathsf{T O R}^{\mathsf{F2108L}}) conferred resistance.277 Comprehensive evaluationsfocusingonbothefficacyandsafetyare imperativetovalidatetheuseofeverolimusinATCtreatment.Apart from everolimus,alternative agents targeting mTOR are being explored.The combination ofAZD6244(a MEKinhibitor)andrapamycindemonstratedsuperior growthinhibitioncomparedwithindividualagents across10 DTC and ATC cell lines.278 Vistusertib effectively overcame resistance to PTX and suppressed ATC tumor growth.279 Additionally, the paeonol-platinum(ll) complex exhibited cytotoxic effects on the SW1736 ATC cellline by downregulating the mTOR pathway,280 while monensin hindered ATCcellproliferationbyimpedingmitochondrialfunction and AMPK-mTOR signaling.281
Otherhopeful targeting therapies
Someothertargetedtherapieshavebeenexploredinthe relentlesspursuitofeffectivetreatmentsforATC.Herewe summarized otherATCtherapiestargetingALK,CDKs,histone deacetylases,TERT, and TP53.
Targeting ALK
Itwasfirstreported that targetingALKby crizotinib(anALK inhibitor)showedanexcellentresponse inanATC case harboring ALK rearrangement.282 Four years later, this case wasfoundtodevelopsecondaryresistance tocrizotinib, andadministering twoALKinhibitors(ceritinibandbrigatinib) brought a therapeutic response to the patient.283 Although thepatient died of locally advanced squamous esophageal cancer induced by radiotherapy, targeting ALK rearrangements is still hopeful in future ATC treatment.
Targeting CDKs
Recognizingthefrequentinactivationofnegativecellcycle regulators and copy number gains of cyclins in ATC,cell cycleinhibitorshaveemergedaspotentialtherapeutic candidates.CDK7 was associated with poor clinical prognosis ofATC,and one of its covalent inhibitors,THZ1,was identifiedbyhigh-throughputchemical screeningand evaluated tobeeffectiveininhibitingtheactivityofcancerstemcells inATC.284285THZ531(acovalentinhibitorofCDK12and CDK13) induced cell cycle arrest and apoptosis by blocking CDK12 in vitro.286 Two CDK4/6 inhibitors, ribociclib and abemaciclib,inducedcellcyclearrestandapoptosisin ATC.287,288AntheDK4/6inhibitor,pabociclib,inded cellcycle arrest in the \mathsf{G}_{0}/\mathsf{G}_{1} phase only in ATC cell lines withCDKN2A/CDKN2Bmutationratherthanthosewithwidetype alternatives.289 Two broad-spectrum inhibitors of CDKs, dinacicliband flavopiridol,showed tumor-suppressing effects onATCinvitro and invivo.290,291In thefuture,new strategies for treatingATC using CDK inhibitors willbe available.
Targeting histone deacetylases
Histonedeacetylaseinhibitorshavebeengradually explored inATC treatment.TheyblockedATCcell migrationandinvasionbyinducingtheexpressionofE-cadherin andpropermembranelocalization of E-cadherin/ \upbeta -catenin complex,292 and improved radioiodine effect in PDTC and ATC byregulating the expression of NIS,thyroid peroxidase, and thyroglobulin.293 Here we summarized three histone deacetylaseinhibitorstestedinATC.
Belinostat
Belinostatreducedtumorsizeinaxenograftmodelof ATC.294 It had a synergistic activity with HSP90 inhibitor NVP-AUY922 in causing cytotoxicity.295 Interestingly, severalhistonedeacetylaseinhibitors(belinostat,vorinostat,and trichostatin A) synergized withHSP90 inhibitor SNX5422 in inducing cytotoxicity,296 while both sodium butyrate and trichostatinA induced apoptosis and differential cell cycle arrest in vitro.297
Panobinostat
Panobinostat induced radioiodine by up-regulating NIs,298 and significant tumor reduction induced by panobinostat was observed.299 Compared with sorafenib and selumetinib,panobinostatshowed maximum cytotoxicityinpatientderivedtumortissueofATCs/PDTCsattheminimum dosage.300
Valproic acid
Explorationofvalproicacid(VPA)incombinationwith variousagentsforATCwarrantsheightenedattention.In vitrostudiesrevealedVPA'saugmentationofDoXandPTX effects.301,32Compared with sole imatinib treatment,the combinationofVPAwithimatinib demonstratedmorepronounced cell cycle arrest.303 vPA prompted apoptosis in the KAT-18 ATC cell line,showing similar effects when combined with Dox,HS-1200 (a synthetic chenodeoxycholic acid derivative), or lactacystin (a proteasome inhibitor).304 Thesynergy of VPA with TRAIL significantly_enhanced apoptosis compared with TRAlL alone in vitro.305 Furthermore,vorinostat and VPA induced cell cycle arrest and raisedPD-L1expression in apatient-derivedPF49ATCcell line.306 In another scenario, VPA sensitized the 8505C ATC cell line to photon irradiation by diminishing DNA damage repair capacity.307 The clinical utility of VPA in ATC remains contentiousandlimited.Areporthighlightedsignificant tumorreduction(by 50.7% viaCTmeasurementand 44.6% via ultrasound measurement)followingcombinedoralVPA, cisplatin, and DoX chemotherapy, radiation, and surgery, sustaininga disease-freestatefor atleasttwoyearspostdiagnosis.308 However, in an Italy-based multicenter randomized controlledphase Il/llltrial,the addition of VPA (1000mg/day) toPTX (80mg/m^{2} /weekly)failedtoimprove progression-free survival or modulate PTX pharmacokinetics.309 The definitive role of VPA in ATC treatment remains uncertain.
Targeting TERT
TargetingTERTinATCtreatmentneedsmoreattention. SilencingofhumanTERTblockedATCcellproliferationand migration significantly.310 Nanoparticles loaded human TERT siRNA showedtumor-suppressioneffect inATC cell lines, and a similar effect was also observed in vivo.311 BIBR1532,a selective TERT inhibitor,induced \mathsf{G}_{0}/\mathsf{G}_{1} cell cycle arrest and apoptosis in SW1736 ATC cell line.312 However,the value of TERTinhibition in treating ATC is yet tobe evaluated deeply.
TargetingTP53
UnravelingthepreciseroleofTP53inATCremainsapriority,yet therapeutic interventions targeting TP53 hold promiseinaddressing thismalignancy.InhibitingTP53has demonstrated efficacy in curbing cell proliferation.HerbimycinA,known for suppressing cell growth,reverses epithelial-mesenchymaltransitionbydeactivatingTP53 and PI3K-AKT signaling in the FRO cell line.313 Conversely, activating TP53 triggers apoptotic responses in ATC cells. Delivery of wild-typeTP53 via adenovirus induces apoptosis,314 while apigenin fosters apoptosis in the FRO ATC cell line by augmenting c-myc levels and TP53 phosphorylation.315′Suberoyl bis-hydroxamic acid promotes apoptosisinvivo through the activation of theNotch1/TP53 signaling pathway.316 The combination of sorafenib and CP31398,a TP53-restoring agent,effectively inhibits cell proliferation in the SW579 ATC cell line.317 Furthermore, modulatingTP53activityaugments theefficacyofradiotherapy inATC.Wild-typeTP53enhances the cytotoxic effects of Nis,heightening the accumulation of betaemitterradionuclidesandtherebyenhancingradionuclide therapy.318 These approaches underscore the potential of TP53-targeted interventions in refining ATC management.
Immunotherapyfor ATC
Tumor immune microenvironment of ATC
ComparedwithotherTCtypes,thetumorimmunemicroenvironmentofATCisuniqueandsomewhatmysterious. The microenvironment of most ATC was infiltrated by macrophages and \mathsf{C D8^{+}} T cells.Compared with PTC,there existsmoreinfiltrationofexhausted \mathsf{C D8^{+}} T cells and M2 macrophages andless cytotoxicityof \mathsf{C D8^{+}} T cells, \boldsymbol{γ}\mathfrak{d}\overline{{\boldsymbol{\mathsf{I}}}} cells,and naturalkiller (NK) cellsinATC,and the levels of immune checkpoint molecules (LAG-3,PD-1,HAVCR-2,and TIGIT) are also elevated.319 Compared with PDTC, the tumor proportionscore of PD-L1was elevated in ATC (7.7% VS. 60% ., P=0.006 ),andtheamountsof \mathtt{C D3^{+}} and \mathsf{C D8^{+}} T cells, {\mathsf{C D}}68^{+} and \mathtt{C D163^{+}} macrophages, and \mathsf{S}100^{+} dendritic cells were also elevated in ATC.320°
Tumor-associatedmacrophages
TAMs emerge as pivotal actors in ATC pathogenesis, particularlyinfosteringmetastasis.Pulmonarymacrophages notably contribute to the pulmonary spread of ATc.321 HumanATCspecimensexhibitrobustinfiltrationof \mathsf{C D68^{+}C D163^{+}} TAMs,322 featuring ramified TAMs. These ramified TAMs intricatelyinterminglewith ATC cells,forming a network through theirramifications,which extend from perivascular clusters and disperse within the tumor parenchyma.323 The abundance of TAMs inversely correlates with ATC prognosis,highlighting the potential of four TAM-related genes (FZD6,RBBP8,PREX1,HSD3B7)aS potential biomarkers.324 A TAM-related prognostic index has been developed,displayingapositiveassociationwithTAMinfiltration levels.324Furthermore, CXCR4 expression significantly correlates with densities of \mathtt{C D163^{+}} TAMS (P=0.013 .325
Immunegeneticsignature
The immunegenetic signature ofATC is alsoyet tobe exploreddeeply.CREB3L1was identified as akeygene in ATCdevelopmentandanupstreamregulatorofdifferentiation-related pathways(including epithelial-mesenchymal transition).326 Most immunogenic cell death genes were highly expressed in ATC,and five genes (TLR4, ENTPD1, LY96,CASP1,and PDIA3)were identified as the dynamic signature in the malignant progression of ATC.327 The T cell immunoglobulin andmucin-domain-containing protein-3 (TIM3)wasidentifiedas animmunecheckpointinmacrophages,328 and TIM3 produced by ATC cells induced tumorpromoting M2-like macrophage polarization.329
Immunotherapyfor ATC
Targeting PD-1/PD-L1
PD-1/PD-L1orchestratesimmunetolerancewithinthe tumor microenvironment,and its targeted inhibition has showcased considerable value in cancer treatment.330
Notably,most ATC cases exhibit positivity for PD-L1, whereasnormalthyroidandDTCpresentwithnegative expression.331 Mean PD-L1 expression markedly elevates in ATC (tumor proportion score =30% )compared withPDTC (tumor proportion score =5% ±b{\cal P}<0.01 )and normal thyroid tissue(tumorproportionscore =0% ., ±b{{\cal P}}<0.001 ).332 PD-L1 expressioninverselycorrelateswiththeOsofindividuals diagnosed with ATC.33 Differences in PD-L1 expression and lymphocyteinfiltrationdistinguishadvancedDTCfrom ATC.334 Elevated PD-1 expression in inflammatory cells significantlyassociateswithpoorerOS (\mathsf{H R}=3.36 ., 95%C1 1.00-12.96; ±b{P}<0.05 inATC.335
Immunotherapy's primaryfocusin ATCrevolves around PD-1/PD-L1targeting.Synergisticinhibition ofprimaryATC cellproliferationisobservedwiththecombinationof radiotherapy and atezolizumab (PD-L1 antibody).336Moreover, dual inhibition of B R A F^{\mathsf{V}600E} and PD-L1 leads to heightenedlocalTAMlevelsandenhancedtherapeutic nanoparticle delivery.337 Clinical studies and case reports collatingimmunotherapyeffortsinATCaresummarizedin Tables 5 and 6,respectively. These tables offer a comprehensiveviewoftheclinicalapplicationofATCimmunotherapies.They underscore thepredominanttargeting of PD-1 in these therapies(except tremelimumab).Additionally,most immunotherapies in ATC are administered alongsidetargetedtherapyandconventionaltrimodal therapy.However,the outcomes from clinical studies of immunotherapies(Table5)arefewercomparedwiththose of targeted therapies(Tables 2,3)inATC.The development of immunotherapiesfor ATC remains restricted,warranting further exploration and advancement.
Otherpotentialchoices
Beyond thePD-1/PD-L1focus,exploring otherfacets of ATC immunotherapy proves promising.Notably,two key areas show potential:targetingNK cells and delving intoradioimmunotherapy.NKcellsplayapivotalroleintheATCtumor microenvironment.Advanced TCpatients,including those with ATC, exhibit an enrichment of \mathsf{C D56^{h i}C D16^{h i/l o}} NK cells. Compared with circulating \mathsf{C D}56^{\mathsf{l o}}\mathsf{C D}16^{\mathsf{h i}} NK cells, \mathsf{C D56^{h i}C D16^{h i/l o}N K} cells demonstrate increased expressionof CD158a and CD158b(inhibitory KIR family members)and decreased NKG2D (an NK’cell activator).338 These \mathsf{C D}56^{\mathsf{h i}}\mathsf{C D}16^{\mathsf{h i}/\mathsf{l o}} NK cells exhibit higher PD-1 and TIM3 expression and diminished cytotoxicityagainst CAL-62ATC cell lines.Dual blockade of PD-1and TIM3 shows potential in boosting both \mathsf{C D56"}\mathsf{C D16}^{\mathsf{h i/l o}} and \mathsf{C D56^{\mathsf{l o}}C D16^{\mathsf{h i}}N K} cells from ATC patients.338 Additionally, NK cells have shown effectivenessintargetingpumonarymetastasesofACinviv39 andATCcelllineinhibitionwasobservedwithUL16-binding proteins (ULBPs) 2/5/6,which attracted \mathsf{C X C R3^{+}} NK cells.340
InflammatorymarkerofATC
TheeffectivemanagementofATCispivotalincurbingits mortalityrates.Toaidinthis,several inflammatory biomarkers have surfaced as potential facilitatorsin managing ATCpatients.These include thelymphocyte-to-monocyte ratio,neutrophil-lymphocyte ratio(NLR),platelet-tolymphocyte ratio,and neutrophil-monocyte-platelet-tolymphocyte ratio. Low lymphocyte-to-monocyte ratio levels have emerged as a marker linked topoorer OS amongATC patients.341 Similarly, NLR demonstrates a significant associationwithOS (\mathsf{H}\mathsf{R}\ =\ \ 3.18 5 95%C1 :1.15-8.85; P=0.026 ,with noticeable differences in OS curves concerning post-radiotherapy NLR (P=0.036) .342 Neutrophilmonocyte-platelet-to-lymphocyteratiostandsoutasanindependentpredictorfortheOSofbothATCandadvanced DTC patients \begin{array}{r l r}{(\mathsf{H}\mathsf{R}}&{{}=}&{6.470;}\end{array} 95%C1 :2.134-19.616; P=0.001 ).343 Notably, ATC patients experiencing an increaseinNLRfromtheirbaselinevaluesexhibitaworse prognosis compared with those without such elevation.344 However, baseline values of NLR,platelet-to-lymphocyte ratio,and lymphocyte-to-monocyte ratio seem to show no significant differences in Os.344 Despite these observations, theprecisevalue and utility of these inflammatory biomarkersinthecontextofATCmanagementawaitfurther determination.
Discussion
Single-cell RNA sequencing in ATC
Inrecentyears,experimentalstudies ofATC have been empoweredbysingle-cellRNAsequencingtechniques.Besidesthegeneticlandscapeand anaplastictransformation mentioned above,6 more features of ATC were revealed. ATC cellsshowedresistance toDNA damagesfrom \boldsymbol{\Upsilon} -radiation by activating genes associated with homologous recombination and non-homologous end joining,345 and hyper-activationofone-carbonmetabolismwasobservedin the transformation from PTC to ATC.346 Interferon-stimulated gene 15(ISG15) correlated significantly with the proliferationandmalignancyoftheATCcancerstem cells.347 SIGLEC15 deactivated T cells by blocking NFAT1, NFAT2, and N F* K B signaling pathways,and SIGLEC15 inhibition stimulated the secretion of \vert F N-γ and IL-2.348 More subtypesoftumor-infiltratinglymphocyteshavebeen graduallyidentified.OneATC-specificATC-associated macrophage subgroup, 112{\mathsf{R A}}^{+}\mathsf{V S I G}4^{+} TAMs,was identified and associated withthe better prognosis of ATC patients.349 {\mathsf{C X C L13}}^{+} T cells and early tertiary lymphoid structure facilitated the immunotherapy for ATc.350 Future research intoATCrequiresmoreextensiveapplicationofthesinglecell RNA sequencing technique,and the value of spatial RNA sequencing technique,which is rarely deployed in dissecting ATC presently,remains to be examined in the pathogenesis and progression of ATC.
Diagnosis of ATC
Diagnosis of ATC comprises two essential components, invasive tissue sampling,yielding cytological andpathological evidence supported by immunohistochemistry, and imaging modalities, with ^{18}\mathsf{F} fluorodeoxyglucose (FDG) positronemissiontomography/computedtomography (PET/CT) playing a central role in accurate staging.175,351
Invasive tissue sampling
FNA and core needle biopsy (CNB) represent standard minimally invasive tissue sampling techniques.352 FNA has revealedseveralcriticalcytologicalfeatures ofATC including nuclear pleomorphism,coarse/clumped chromatin,macro-nucleoli,apoptosis, and necrosis.353 FNA shows an accuracy rate of 86.5% in diagnosing a cohort of 163 ATC cases,354withinitialultrasonography-guidedFNA achieving a correct diagnosis of ATC in 50% of cases.355 However, the effectiveness of FNA encounters challenges from CNB.In a cohort of 59 ATC cases,CNB shows a higher sensitivityof 87.5% andapositivepredictivevalueof 100.0% for diagnosing ATC than FNA (50.6% and 90.9% ,respectively).356 The rate of diagnostic surgery is significantly lower after CNB (12.5%) than after FNA (35.4%) (P=0.020) .356 Similarity,a meta-analysis reported that CNB showed a higher sensitivity (80.1%) valuefor diagnosingATCthan that of FNA (61%) and exhibited apositive predictive value of 100% for ATC.357 Meanwhile, the need for additional diagnostic surgery after CNB was 17.6% for ATC.357 Sensitivity and specificity of both FNA and CNBin diagnosingATC need more independentexplorationandvalidation.
Immunohistochemistry
Immunohistochemistry plays a crucial role in establishing the diagnosisofATCthroughtissuesampling.Comparative analyses withPTCreveal significantly elevated expression ofcancerstemcellmarkersinATC,notablychemoresistancemarkers,whichcorrelatewithdiminishedoverall survival in ATC cases.358 Moreover, immunohistochemical profilingfacilitatestheidentificationofan8-marker transformationpanelthat exhibits 100% accuracy, sensitivity,and specificity in distinguishing ATC from DTC.359
Two immunohistochemical biomarkersin ATCare worthy of note.One ispairedboxgene8(PAx8).Itwas reported that all three FNA samples of ATC were PAX8 positive.360 PositivePAX8-stainingisreportedinfiveofsevenATCcases mimicking primary head and neck squamous cell carcinoma.361 PAX8 expression was positively correlated with an epithelial pattern (P=0.0008) ,362 a coexisting differentiated thyroid carcinoma component (P~=~0.0004) ,362and improved OS (P=0.019) .363 Meanwhile, another study reported that PAX8 staining was positive in 26 (76%) ATC cases, including all 16 squamodisc variants,7 (58%) giant cell/ pleomorphic variants, and 3 (50%) spindled variants, and all head andnecksquamouscellcarcinomaswerenegativefor PAX8 contrastly.364 Three immunohistochemical features of ATC are proposed: \upbeta -cateninnuclearexpressionwithnoor reduced cell membranous expression,theloss or discontinuouspatternofE-cadherinexpression,and thelossofPAx8 nuclear expression.365 However, the sensitivity and specificityofPAx8indiagnosingATCneedmoreimprovement.In acohortcomprising6casesofATC,allexhibitedpositive staining for pan-cytokeratin,but PAx8 expression was detected in only 40% of these cases.36 In another cohort of 29 ATC cases,the detection rates for thyroid transcription factor-1(TTF-1),PAX8,and E-cadherinwere 17.2% , 51.7% and 10.3% ,respectively.365 Prostate-specific membrane antigen(PSMA),theotherimmunohistochemicalbiomarkerin ATC,needs more attention.Six of the eight analyzed patients(2 ATCs and 4PDTCs)showedincreasedglucose metabolismwithoutincreasedPSMAuptakeafterPET/CT, whileimmunohistochemical analysis ofPSMA expressionin correspondingpatient tissue samplesreported that there wasstrongPSMAexpressionin27oftheanalyzed 39{\mathsf{A T C}} and 13 of the analyzed 22 PDTC tissue sections.367 There was a correlationbetweenimmunohistochemicalPsMAexpression and uptake on gallium-68 (^{68}\mathsf{G a}) -PMSA-PET/CTinthreeof the examined patients.367In spite of that,the role of PSMA in PET/CT imaging is controversial in ATC.Although ^{68}\mathsf{G a}. PMSA-PET/CTdemonstratedalowerdetectionrate(3/11) thanFDG-PET/CT(8/11)whenvisualizingTClesions(totalof 11 ATC cases),368 it was also reported that ^{68}\mathsf{G a} PMSA-PET/ CT showed high uptake in the primary tumor, cervical, and mediastinal nodes in an ATC case.369
To date,there remains a need for further exploration intothebreadthandeffectivenessofimmunohistochemical biomarkers for diagnosing ATC.Additionally,unlocking the fullpotentialofimmunohistochemistryinelucidating pathological characteristics and monitoring disease progressioninATCis imperative.
^{18}\mathsf{F} -FDG PET/CT
^{18}\mathsf{F} -FDG PET/CT plays a pivotal role in assessing tumor progressionandtailoringdiseasemanagementstrategiesfor ATC patients.175351ATC demonstratesrobust uptaken ^{18}\mathsf{F}. FDG PET images,significantly influencing the clinical management of half of the ATC cohort (16 ATC cases).370 various PETparameters,including elevated maximum standardized uptake value (\mathsf{S U V}_{\mathsf{m a x}}) ,metabolictumor volume,and total lesion glycolysis, are closely associated with adverse prognosis (P<0.001 , {±b P}=0.002 ,and ±b{{\cal P}}<0.001 , respectively).371 While variations in \mathsf{S U V}_{\mathsf{m a x}} and occurrences of local relapse exhibit no significant correlationpotentially duetothe limited availability of assessable ^{18}\vec{\mathsf{F}} -FDGPET/CTATC cases (less than 50% ,372 both the volume (>=300mL) and intensity (\mathsf{S U V}_{\mathsf{m a x}}\ge18) of FDGuptake emerge as significantprognostic indicators for ATC patient survival.373 The comprehensive assessment of ^{18}\mathsf{F} -FDG PET/CT in diagnosing ATC is elucidated in Table 8,underscoring its considerable diagnostic utility.The future clinical utility of ^{18}\mathsf{F} -FDGPET/CTholds promise for monitoring therapeutic efficacy,374 paving the wayforexpandedapplicationsinATCmanagement.
Prognosis of ATC
Prognosisisadirectindicatoroftreatmentefficacy,and challenges in the treatment of ATCcan be characterized by independent prognosticfactors for their pivotalrolein assessing conditions,guiding treatment decisions,and enhancing survival outcomes.Severalclinicalstudies of independent prognostic factors in ATC have been conducted,375-389and theyhavebeensummarized inTables 9-17. Independent prognostic factors of ATC in these tables can be categorized into three main domains:patient's initial condition,tumor staging,and therapeutic interventions.Subsequentdiscussionwilldelveintothese domains to reveal the challenges in fighting with ATC.
Patient's initial condition
Age
Age at diagnosis basically correlates with inferior OS among patients withATC(Table 9).Age at diagnosis exceeding70 years amplifies the risk among ATC patients (\mathsf{H R}=1.662 , 95%C1 :1.321-2.092), with a substantial disparity observed incancer-specificmortalityratesper1oo0-person-years betweenindividualsyoungerandolderthan70years (949.980 195%C1 :827.323-1090.822) VS.1546.667 (95%C| 1333.114-1794.428); \begin{array}{r l r}{P}&{{}<}&{0.001}\end{array} 390 Nowadays, more attention should begiventothe earlyscreeningofATC to decreasetheriskofATCpatients,andtheclassificationof ATC patients may facilitate ATC management,as shown by a valuable tool for risk stratificationbased on age inforecasting the outcomes of ATC patients.391
Reference | Age (years) | Gender | Imaging findings in diagnosis | Oncological features caughtby imaging |
lagaru et al451 | 51 | Female | Multiple pulmonary metastases and a left adrenal lesion | Adrenalmetastasis |
Nguyen et al452 | 76 | Female | i)High metabolic large massesin the right neck; i)lower neck near the midline extending to the upper mediastinum; i) large lower neck/ mediastinal masscompressingthe | Tumor staging and evaluationafter therapy |
Strobel et al453 | 46 | Male | trachea i)"Worm-like”increased FDGuptake extending from the primary tumor into the mediastinum and ending just above theright atrium;ii)FDG-active lesionislocatedwithinthedilated | Vascular tumor invasion |
Zweifel et al454 | 57 | Male | superior vena cava Increased18F-FDG uptake in the cervical/retrosternal mass, in the bone marrow, and in the enlarged | Bone and spleen metastasis |
Yurkiewicz et al455 | 61 | Female | spleen Extensivehypermetaboliclesions throughouttheskeletalmusculature concerningmetastaticdisease | Skeletal muscle metastasis |
Reference | Cases | Independent prognostic factor | HR | 95%CI | P-value | |
Jergin et al375 | 261 | Age of diagnosis | 1.02 | 1.00-1.03 | 0.007 | |
Junko et a[376 | 100 | Age | 1.03a | 1.01-1.05 | 0.014 | |
Zivaljevic et al389 | 150 | Patient age | 0.68b | 0.49-0.95 | 0.023 | |
de Ridder et al383 | 812 | Age | 1.014 | 1.006-1.020 | ||
Wu et al385 | 97 | Age at diagnosis | 1.03 | 1.01-1.06 | Significant but not available | |
Hvilsom et al381 | 219 | Older age | 1.4 | 1.0-2.0 | Significant but | |
Wendler et al379 | 100 | Age at initial | Ref | not available | ||
diagnosis | ≥70 years | 1.048 | 1.015-1.082 | 0.004 | ||
Glaser et a[380 | 3552 | Age | Ref | |||
≥65 years | 1.42 | 1.26-1.60 | ||||
Zhou et a[387 | 491 | Age | Ref | |||
≥65years | 1.31c | 1.07-1.62 | 0.011 |
Clinical presentation
Table10 detailstheprognosticrole of clinicalpresentation, which includes experimental examination,complications, comorbidities, and daily living abilities. This tabulation shows that clinical presentation is controversial for treating ATC.
Onthe onehand,experimentalexaminationof suspicious people can be practical in early-stage screening, diagnosis,and modifying therapeutic schemes.LeucocytosisandNLRhavebeenidentifiedascorrelatingwith inferior OS among ATC patients (Table 10).More independentresearch on the value of experimentalexamination is warranted.
Ontheotherhand,complications atdiagnosiscall for more active interventionsfor their opposingrolesin the prognosis ofATC.Three complications,respiratoryimpairment (Table 10),vocal fold palsy (Table 10),and dyspnoea,392 have portend a poorer prognosis. Additionally, comorbidities,asassessedbytheCharlson-Deyocomorbidity score, exert a negative effect on prognosis (Table 10).Patients’complications and comorbidities should be appropriately evaluated and handled whenfacing therapeutic options for ATC,and the burden of ATC patients can be lightened extensively.
Reference | Cases | Independent prognosticfactor | HR | 95%CI | P-value | |
Junko et al376 | 100 | Leukocytosis (white blood cell count ≥10,000/mm3) | 2.04a | 1.26-3.24 | 0.004 | |
Hvilsom et al381 | 219 | Respiratory impairment at diagnosis | 2.0 | 1.2-2.6 | Significant | |
Hvilsom et al381 | 219 | Vocal fold palsy at diagnosis | 1.1 | 0.8-1.6 | but not available | |
Jannin et al384 | 295 | Neutrophil-lymphocyte ratio | Ref | |||
≥5.05 | 2.05 | 1.39-3.03 | ||||
Sun et al377 | 60 | White blood cell counts | Ref | |||
≥10.0 × 10%/L | 1.869b | 1.069-3.269 | 0.028 | |||
Glaser et al380 | 3552 | Charlson-Deyo comorbidityscore | 0 | Ref | ||
1 | 1.36 | 1.19-1.55 | ||||
2 | 1.69 | 1.33-2.14 |
Tumor staging
TNMstagingisessentialindelineatingtheanatomical extentofATCandestablishingitsstagetoguidetailored treatmentstrategies.It consists of three sections,primary tumor (T),lymph nodes metastasis (N),and distant metastasis (M).393
The value of three TNM sections in determining prognosis independently has been examined initially.Primary tumors (T status),as detailed in Table 11,can be characterizedbytumorsize,theextentofprimarydisease,and extrathyroidal invasion(extension).Larger tumor size and extrathyroidalinvasion(extension)are correlatedwith reducedOSamongATCpatients,whereasa confined extent ofprimarydiseaseisassociatedwithimprovedOsoutcomes.Lymph node metastasis (N Status),as detailed in Table12,,also showcases itsindependence in determining the prognosis of ATC patients.Nodal classification as negative/unknownimproves OS outcomes,whereas N status as \mathsf{N}_{+}/\mathsf{N}_{\mathsf{x}} indicates decreased OS among ATC patients.A retrospective study (n\ =\ 313) )reported thatlymphnode metastasisemergesasanindependentriskfactorforATC mortality(adjusted \begin{array}{r l r}{\mathsf{H}\mathsf{R}}&{{}=}&{1.47}\end{array} 5 95%C1 :1.10-1.96; ±b{P}=0.009 .394Distant metastasis (M Status),as detailed in Table13,correlateswithimpairedOs,andthereexistsa significantdifferencebetweenthewholeATCcohort (n=152) andATCwithdistantmetastasis groups (n=88 一 within the wholecohort in the mortality 76% Vs. 90% , {P}=0.01 ),survival {>}1 year( 32% Vs. 15% {±b P}=0.003^{\prime} ,and median survival (228.5 vs. 171 days; {±b{P}}=0.01 ).395
Each section of TNM staging can independently influence theprognosisofATC,andbasedontheassessmentofall sections,ATC cases will be classified into stage IVA,stage IVB, or stage IVc.393 Generally, a higher stage denotes a graver risk of ATC patient survival,as outlined inTable 14. ChallengestotheprecisestagingofATCarestillworthyof consideration and solution,and dynamic monitoring of ATC progression urgesfurtherinvestigations onthe exact results and prognostic value of three sections of TNM staging.
Therapeuticinterventions
The efficacy and limitations of trimodal therapy, comprising surgery,chemotherapy,and external beam radiotherapy,havebeen discussed earlier.Recently,each part of trimodal therapy has been gradually scrutinized for its independence in influencing the prognosis of ATC,and theresultfrom suchscrutinization directs thefuture optimization of ATC therapy.
Surgery
Independent impact of surgery on prognosis is outlined in Table 15.Although the decision to undergo surgery correlates with improved OS of ATC patients,a pooled analysis exhibited that surgerybrings higher risk toATCpatients (\mathsf{H}\mathsf{R}=1.997 , 95%C1 :1.162-3.433; ±b{P}=0.012 .396Maximum surgical scope and negative surgical margins indicate the
Reference | Cases | Independent prognostic factor | HR | 95%CI | P-value | ||
T status | Hvilsom et al381 | 219 | T4b | 1.6 | 1.0-2.6 | Significant but not | |
Extent of | Glaser et al380 | 3552 | Primarily confined | Yes | Ref | available | |
primary disease | Jergin et al375 | to the thyroid Extent of primary | No/unknown | 1.36 | 1.13-1.62 | 0.001 | |
261 | disease | Confined Extracapsular | Ref | ||||
extension | 1.68 | 1.05-2.70 | 0.032 | ||||
Further extension | 3.64 | 2.23-5.94 | |||||
Tumor size | ormetastasis | ||||||
Liu et al386 | 50 | Diameter of primary tumor ≤4 cm | 0.264a | Not available | 0.001 | ||
Glaser et al380 | 3552 | Tumor size | ≤6 cm | Ref | |||
>6 cm | 1.36 | 1.23-1.55 | |||||
Jergin et al375 | 261 | Tumor size | |||||
≤7 cm | Ref | ||||||
>7 cm | 1.59 | 1.05-2.70 | 0.010 | ||||
Extrathyroidal | Unknown | 1.51 | 1.09-2.10 | 0.014 | |||
invasion | Junko et al376 Mohebati et a[378 | 100 | Extrathyroidal invasion | 3.02b | 1.17-10.39 | 0.021 | |
83 | Gross | No | Ref | ||||
extrathyroidal extension | Yes | 2.293 | 1.5-5.8 | 0.002 | |||
Zhou et al387 | 491 | Tumor extension | |||||
1 IV | Ref 1.64c | 1.17-2.30 | 0.004 |
Note:
Reference | Cases | Independentprognosticfactor | HR | 95%CI | P-value | |
Glaser et al380 | 3552 | Nodal classification | Clinically or pathologically positive | Ref | ||
Negative/unknown | 0.81 | 0.72-0.90 | ||||
de Ridder et al383 | 812 | N status | No | Ref | ||
N+ | 1.2 | 1.0-1.4 | 0.020 | |||
Nx | 1.2 | 1.0-1.5 | 0.050 |
Reference | Cases | Independent prognostic factor | HR | 95%CI | P-value | |
Junko et al376 | 100 | Distant metastasis | 1.94a | 1.18-3.25 | 0.009 | |
Liu et a(386 | 50 | Distant metastasis | 3.438b | Not available | 0.002 | |
Hvilsom et a[381 | 219 | Distant metastases | 2.7 | 1.8-3.9 | Significant but not available | |
Wendler et al379 | 100 | M status | Mo | Ref | ||
M1 | 2.718 | 1.384-5.342 | 0.004 | |||
de Ridder et a(383 | 812 | M status | Mo | Ref | ||
M1 | 1.8 | 1.5-2.1 | ||||
Zhou et a[387 | 491 | Distantmetastasis | Mo | Ref | ||
M1 | 1.87c | 1.52-2.30 | ||||
Note:
Reference | ATC cases | Independentprognosticfactor | HR | 95%CI | P-value | |
Wu et al385 | 97 | Stage IVC | 2.65 | 1.35-5.18 | Significant but | |
Stage IVA | Ref | not available | ||||
Simoes-Pereira et al382 Jannin et al384 | 79 295 | Stage at diagnosis Stage | Stage IVC | 3.327a | 1.001-11.055 | 0.050 |
Stage IVB | Ref | |||||
Stage IVC | 1.78 | 1.33-2.51 | ||||
prolonged OS of ATC patients. In a retrospective study of 233 stage IVB ATC patients,the super-radical resection group (n=23 )received an improved one-year cause-specific survival rate compared with the no/palliative surgery group (n=80 and 72, respectively) (P=0.0065 .397
Althoughsurgeryhasbeenstronglyrecommendedfor stage IVA and resectable stage IVB ATC patients,175 more efforttoextend and amelioratethe applicationofsurgery is warranted.Tobegin with,increasing the opportunity and wishfor undergoing surgery is vital forthe initial treatment ofATC.ATCpatientswithout thyroidresectionshave older ageand more advancedstagecomparedwithsurgicalpatients (both P<0.001 ).398 Besides, a thyroidectomy should beregularlyperformedtofacilitatefurthertreatmentand improve Os.Finally,radical resection and negative margin shouldbesoughtandcombinedwithother therapiesfor betterclinicaloutcomes.Negativemarginstatuswasmore often achieved instageIVAATCpatients (P<0.001) ,and positivemarginstatuswas associatedwithhighermortality in stageIVA ATCpatients (P=0.017) buthad no influence on the survival of stages IVB and IVC (P>0.05) .398
Chemotherapy
Therole of chemotherapy in theprognosis of ATC seems confusing,as shown inTable 16.Despite the efficacy of and sensitivity tochemotherapyinimprovingOs,some observations showits effect onincreasingtherisk of further survivalofATCpatients.Ameta-analysisalsoreportedthat chemotherapydidnotprolongthesurvival ofATCpatients comparedwithcontrols (\mathsf{H R}\ =\ 0.63 ., 95%C1 :0.33-1.21;
Reference | Cases | Independent prognostic factor | HR | 95%CI | P-value | ||
Decision about undergoing surgery | Junko et al376 | 100 | No surgical resection | 3.99a | 2.37-6.66 | ||
Zivaljevic et al389 | 150 | Surgical | 0.43b | 0.29-0.63 | 0.000 | ||
Liu et al386 | 50 | intervention Surgery | 0.331b | Not available | 0.038 | ||
Yamazaki et al388 | 66 | Resection | No Yes | Ref | |||
Surgical method | Wendler et al379 | 100 | Thyroid surgery | Radical | 0.316 | 0.129-0.773 | 0.012 |
other or none | Ref | 0.012 | |||||
Glaser et al380 | 3552 | Surgery | 2.201 | 1.186-4.086 | |||
Total thyroidectomy | Ref | ||||||
Other surgery | 1.32 | 1.13-1.54 | |||||
Zhou et al387 | 491 | Surgery | None | 1.76 | 1.52-2.03 | ||
No | Ref | ||||||
Non-thyroidectomy | 0.68c | 0.53-0.89 | 0.004 | ||||
Surgical scope | Mohebati et a[378 | 83 | Resection type | Thyroidectomy | 0.51c | 0.40-0.66 | |
Ro/R1 | Ref | ||||||
Wendler et al379 | 100 | Complete local | R2/Rx | 2.021 Ref | 1.0-3.9 | 0.037 | |
Yes | |||||||
Glaser et al380 | 3552 | resection Surgical margins | No | 5.539 Ref | 1.858-16.514 | 0.002 | |
Negative positive/unknown | 1.46 | 1.21-1.77 |
Note:
Z=1.39 , ±b{P}=0.17 .399 The therapeutic effect of chemotherapydemandsindependentvalidations andpersonalized chemotherapeuticoptionsshouldbeadvisedfordesirable clinical outcomes.
Radiotherapy
Table17outlinestheprognosticroleofradiotherapy,which showsthesignificantreductionintheriskofATCpatients byradiotherapy.Radiotherapyisadefaultoptionforall stages of ATC patients,175 and the combination of radiotherapyandsurgeryalsoshowcasesexcellentbenefits.One meta-analysisalsoreportedthecombinationofsurgeryand radiotherapysignificantlyreducedtheriskofdeath comparedwithsurgeryalone (\mathsf{H}\mathsf{R}}&{=\phantom{-}0.51 ; 95%C1 .
0.36-0.73; Z~=~3.66 . P~=~0.0002 )forresectableATC cases,399 and another meta-analysis reported that postoperativeradiotherapy significantlyreduced therisk of deathinallthepatientswithresectedATCcomparedwith those with surgery alone( \mathsf{\Pi}[\mathsf{H}\mathsf{R}=0.556 , 95%C1 :0.419-0.737; P<0.001).400
Despitethat,moreeffortiswarrantedintheoptimiza tionof radiotherapy.Onthe onehand,higherradiation dosecorrelateswithimprovedOs.Areasonableelevation of radiation dose is necessary for better clinical outcomes, andsideeffectsdeserveattention.Itwasreportedthat radiation dose >=50 Gy was associated with less dysphagia (odd ratios (0\mathsf{R})=0.2 , 95%C1 :0.05-0.9; {±b P}=0.029. .4010n the other hand,the optimal technique for administering
Reference | Cases | Independent prognostic factor | HR | 95%CI | P-value | |
Liu et al386 | 50 | Chemotherapy | 0.173a | Not available | 0.003 | |
Wendler et a[379 | 100 | Chemotherapy | No | Ref | 2.424-60.394 | 0.003 |
Yes | 11.636 | |||||
Glaser et a[380 | 3552 | Chemotherapy | Yes | Ref | 1.16-1.50 | |
No | 1.32 | |||||
Yamazaki et a[388 | 66 | Responsetopaclitaxel | No | Ref | 0.193-0.930 | 0.032 |
Yes | 0.423 |
Reference | Cases | Independent prognostic factor | HR | 95%CI | P-value | |
Junko et a(376 | 100 | Radiation | 2.96a | 1.86-4.72 | ||
Wu et al385 | 97 | Absence of definitive | 1.90 | 1.01-3.59 | Significant | |
Liu et a[386 Wendler et al379 | 50 | or adjuvant radiotherapy | but not available | |||
Radiotherapy 100 | 0.297b | Not available | 0.007 | |||
External beam radiotherapy | ≥40 Gy | Ref | ||||
Yamazaki et al388 | 66 | Radiotherapy | 0.339 | 0.152-0.759 | 0.008 | |
No | Ref | |||||
Zhou et al387 | 491 | Treatment | Yes Radiotherapy alone | 0.229 Ref | 0.100-0.526 | 0.001 |
Radiotherapy plus | 0.69c | 0.56-0.85 | ||||
Glaser et al380 | 3552 | Radiotherapy | chemotherapy | |||
None | Ref | |||||
36.1-59.3 Gy | 0.58 | 0.50-0.69 | ||||
≥59.4 Gy | 0.41 | 0.35-0.49 |
Note:

radiotherapyneedsexamination.Besidesexternalbeam radiotherapy,one radiation delivery technique,intensitymodulatedradiotherapyorvolumetricmodulatedarc therapy,correlates with lower skin toxicity \mathsf{O R}=0.2 ,, 95% CI: 0.04-0.9; P\ =\ 0.045 .401 Comparison among various radiotherapeutictechniquesis essentialfor effectiveATC treatment.
Conclusion
ATC,the most aggressive form of TC,poses significant challenges due to its unclear pathogenesis.Key signaling pathways,namely the MAPK and PI3K-AKT-mTOR pathways (Fig. 1), play pivotal roles in ATC tumorigenesis.Known molecular drivers such as K R A S^{\mathsf{G12D}} and BRAFV600E mutations contribute substantially to this process.Next-generation sequencingofATCsamples(detailedinTable1)hasunveiled additionalgeneaberrationsinALK,CDK,TERT,TP53, andWntpathways,allcrucialinregulatingcellproliferationandhomeostasis.Thesemutationsfoster theimmortality and invasiveness of ATC cells.Additionally, dysfunctionofmitochondrialmetabolismacceleratesATC tumorigenesis,andmitochondrion-targettherapieshave beengraduallyallocatedwithadequateattention,especiallytheirsynergisticeffectwithchemotherapyforATC.
Targeted therapies, outlined in Tables 2-4,have supplementedconventionaltrimodaltherapiesforATC.Agents targetingRTKs(likelenvatinibandsorafenib)andRAF (notablythedabrafenib-trametinibcombination)are under scrutinyfor theirpotentialresponsiveness andpotential to enable curative approaches.However,the efficacyandsafetyofotheragentsintargetedtherapies require more independent clinical studies.While approachestargeting thePI3K-AKT-mTORcascade exhibit diversity,they largely remain inthe experimental phase. Among alternative targeted therapies,CDKs and histone deacetylase inhibitors hold promises for future clinical applications.
Distinctdifferencesinthetumorimmunemicroenvironment distinguishATCfrom other TC types.Dysregulated PD-1/PD-L1expressionandtheirclosecorrelationwith clinicaloutcomeshavespurredtheexplorationand trialsof ATC immunotherapy,detailed in Tables 5 and 6.The amalgamation of immunotherapy,targeted therapy,and conventional treatment could be pivotal in the management of ATC.Beyond PD-1/PD-L1 targeting, experimental approachesinvolving NKcelltargetingandradioimmunotherapyofferinnovativeavenues.Leveraginginflammatory markerspromises rigorous evaluationand precisemanagementof ATC.Abrief graphic summary of theimmunemicroenvironmentofand immunotherapy for ATC is provided in Figure 2.Noteworthily,the globally ongoingclinicaltrials were collectedfromClinicalTrials.gov andlistedinTable7,andwehopethatnoveltherapeutic optionscanbeavailablefromtheseclinicaltrials.
The diagnosis of ATC is based on invasive tissue sampling and imaging modalities.Although FNAreveals the unique cytologicalfeatures of ATC,CNBexhibitsitspotential to replace FNA with higher sensitivity and 100% positive predictivevalue.Theirvalue in diagnosing ATCrequiresfurther exploration.Immunohistochemistry showcases its diagnosticvaluebydisclosingpotentialbiomarkersforATC,and the sensitivity and specificity ofimmunohistochemical biomarkers are worthy of examination andvalidation.As the recommended imaging modality of ATC, ^{18}\mathsf{F} -FDGPET/ CT can detect the unique oncological features of ATC,as shown in Table 8,and several parameters of ^{18}\mathsf{F} -FDG PET/ CT also correlatewithinferior Os,indicating thepromising future in deploying ^{18}\mathsf{F} -FDG PET/CTfor panels specialized in ATC.

Prognosisdirectlyindicatestreatmentefficacy,andindependentprognosticfactors,detailedinTables 9-17, revealtheATCtreatment'sstatusquoandlimitations.To beginwith,thepatient's initial condition should bevalued. Earlyscreeningofsuspiciouspeopleisnecessaryfor reducingtheriskofolder age,and ageshould beconsidered when classifying ATCpatients and administeringpersonalized treatment.Clinical presentations of ATC patients should alsobehandled actively.Experimental examination of specific biomarkers can be developed for early screening and diagnosis,and patients’complications and comorbiditiesshouldbeassessedandcontrolledforbetterclinical outcomes.Moreover,precise evaluation of TNM staging is thecornerstoneofconsideringtherapeuticoptionsand dynamic monitoring of ATC progression. Finally, the value of trimodal therapy, the default therapeutic option,is acknowledged fully. However, improvements in trimodal therapyareencouragedtolessentheburdenandameliorate the OS of ATC patients, such as the extension of thyroidectomy,validation and exploration of chemotherapy, and augmented doses ofradiotherapy.Combiningtrimodal therapy andnew therapy(targeted therapy andimmunotherapy)deserves rigorous evaluation and broadening applications.
CRediTauthorshipcontributionstatement
Zhao Zou: Data curation,Formal analysis, Investigation, Methodology, Visualization,Writing —original draft,Writing -review& editing.Linhong Zhong:Conceptualization, Supervision, Validation.
Conflictofinterests
The authors have no competing interests to declare.
References
1.Kim J,Gosnell JE,Roman SA.Geographic influences in the global rise of thyroid cancer.Nat Rev Endocrinol.2020;16(1): 17-29.
2.Sung H,Ferlay J,Siegel RL,et al.Global cancer statistics 2020:GLOBOCANestimates ofincidenceandmortality worldwidefor36cancersin185countries.CAACancerJClin. 2021;71(3):209-249.
3.Pizzato M, LiM, Vignat J, et al.The epidemiological landscape ofthyroidcancerworldwide:GLOBOCANestimatesforincidenceandmortalityratesin2020.LancetDiabetesEndocrinol.2022;10(4):264-272.
4.Smallridge RC,Copland JA.Anaplastic thyroid carcinoma: pathogenesisand emergingtherapies.Clin Oncol.2010;22(6): 486-497.
5.Zeng PYF,Prokopec SD,Lai SY,et al.The genomic and evolutionarylandscapesofanaplasticthyroidcarcinoma.Cell Rep.2024;43(3):113826.
6.LuL,WangJR,HendersonYC,et al.Anaplastic transformation inthyroidcancerrevealedbysingle-celltranscriptomics.J ClinInvest.2023;133(11):e169653.
7. Trenker R, Jura N.Receptor tyrosine kinase activation: from the ligand perspective. Curr Opin Cell Biol. 2020;63:174-185.
8.Prior IA, Hood FE, Hartley JL.The frequency of Ras mutations in cancer. Cancer Res. 2020;80(14):2969-2974.
9.Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/- Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives.Eur J Med Chem. 2016;109:314-341.
10. Degirmenci U, Wang M, Hu J. Targeting aberrant RAS/RAF/- MEK/ERK signalingfor cancer therapy.Cells.2020;9(1):198.
11. Schulze A, Nicke B, Warne PH, Tomlinson S, Downward J. The transcriptionalresponsetoRafactivationisalmost completelydependentonmitogen-activatedproteinkinase kinase activityand shows a major autocrine component.Mol Biol Cell.2004;15(7):3450-3463.
12. Ullah R, Yin Q, Snell AH, Wan L.RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol.2022;85:
123-154.
13. Khan SA, Ci B, Xie Y, et al. Unique mutation patterns in anaplastic thyroid cancer identified by comprehensive genomic profiling. Head Neck. 2019;41(6):1928-1934.
14. Ngo TNM, Le TTB, Le T, et al. Primary versus secondary anaplastic thyroid carcinoma: perspectives from multi-institutional and population-level data. Endocr Pathol. 2021;
32(4):489-500.
15.Xu,FuchTgantiting anaastithy carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid.2020;
30(10):1505-1517.
16. Song E, Song DE, Ahn J, et al. Genetic profile of advanced thyroid cancers in relationto distant metastasis.Endocr Relat Cancer.2020;27(5):285-293.
17.Zhu X, Zhao L, Park JW, Willingham MC, Cheng SY.Synergistic signaling of KRAS and thyroid hormone receptor \upbeta mutants promotes undifferentiated thyroid cancer through MYC upregulation. Neoplasia. 2014;16(9):757-769.
18. Wu H, Sun Y, Ye H, Yang S, Lee SL, de las Morenas A. Anaplasticthyroidcancer: outcome andthemutation/expression profiles of potential targets. Pathol Oncol Res. 2015;21(3):695-701.
19. Pita JM,Figueiredo IF, Moura MM, Leite V, Cavaco BM. Cell cycle deregulation and TP53 and RAS mutations are major events inpoorly differentiatedandundifferentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(3): E497-E507.
20. Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052-1066.
21. Karslioglu French E, Nikitski AV, Yip L, Nikiforova MN, NikiforovYE,CartySE.Clinicopathologicalfeatures and outcomes of thyroid nodules with EIF1AX mutations.Endocr Relat Cancer. 2022;29(8):467-473.
22.Pozdeyev N, Gay LM, Sokol ES, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 2018;24(13):3059-3068.
23. Liu W, Kelly JW, Trivett M, et al. Distinct clinical and pathological features are associated with the BRAF(T1799A(V600E)) mutation in primary melanoma. J Invest Dermatol. 2007;
127(4):900-905.
24. Scheffel RS,Dora JM,Maia AL. BRAF mutations in thyroid cancer.Curr Opin Oncol.2022;34(1):9-18.
25. Chiappetta G, Basile A, Arra C, et al. BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein. J Clin Endocrinol Metab.2012;97(1):E115-E120.
26. Liu Y, Gunda V, Zhu X, et al. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer.Proc Natl Acad Sci USA.2016;113(28):7750-7755.
27.Rushton S, Burghel G,Wallace A, Nonaka D. Immunohistochemical detection of BRAF V600E mutation status in anaplastic thyroid carcinoma. Histopathology. 2016;69(3): 524-526.
28. Buffet C, Allard L, Guillerm E, et al. Detection of BRAFV600E by digital PCR on fine-needle aspirate enables rapid initiation ofdabrafenibandtrametinibinunresectableanaplasticthyroid carcinoma.EurJEndocrinol.2022;187(3):K33-K38.
29. Wang X, Ying T, Yuan J, et al. BRAFV600E restructures cellular lactylation to promote anaplastic thyroid cancer proliferation.Endocr Relat Cancer. 2023;30(8):e220344.
30. Charles RP, Silva J, lezza G,Phillips WA, McMahon M.Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis. Mol Cancer Res. 2014; 12(7):979-986.
31. Gao Y, Zhang D, Wang F, Zhang D, Li P, Wang K. BRAF V600E protect from cell death via inhibition of the mitochondrial permeability transition in papillary and anaplastic thyroid cancers.J Cell Mol Med. 2022;26(14):4048-4060.
32. Limberg J, Egan CE, Gray KD, et al. Activation of the JAK/- STAT pathway leads to BRAF inhibitor resistance in BRAFV600E positive thyroid carcinoma. Mol Cancer Res. 2023;21(5): 397-410.
33. Zhang K, YuM, Hao F, Dong A, Chen D.Knockdown of S100A4 blocks growth and metastasis of anaplastic thyroid cancer cells in vitro and in vivo. Cancer Biomarkers. 2016;17(3): 281-291.
34.ZaneM,Agostini M,Enzo MV,et al.Circulating cell-free DNA, SLC5A8 and SLC26A4 hypermethylation, BRAF(V600E): a noninvasive tool panel for early detection of thyroid cancer. BiomedPharmacother.2013;67(8):723-730.
35.Yi JW, Ha SY, Jee HG,et al. Induction of the BRAFV600E mutation inthyroidcellsleadstofrequenthypermethylation. Clin Exp Otorhinolaryngol. 2022;15(3):273-282.
36.NikiforovaN,imuraT,GandhiM,et alRAFmutation thyroidtumorsarerestrictedtopapillarycarcinomasand anaplastic or poorly differentiated carcinomas arising from papillary carcinomas.J Clin Endocrinol Metab. 2003;88(11): 5399-5404.
37. Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations.Cancer. 2005;103(11):2261-2268.
38.Takano T, Ito Y, Hirokawa M, Yoshida H, Miyauchi A. BRAF V600E mutation in anaplastic thyroid carcinomas and their accompanying differentiated carcinomas. Br J Cancer. 2007; 96(10):1549-1553.
39. Gauchotte G,Philippe C, Lacomme S, et al. BRAF, p53 and SOX2in anaplasticthyroidcarcinoma:evidenceformultistep carcinogenesis. Pathology. 2011;43(5):447-452.
40. Chen TY, Lorch JH, Wong KS, Barletta JA. Histological features of BRAF V60OE-mutant anaplastic thyroid carcinoma. Histopathology. 2020;77(2):314-320.
41. Song YS, Jung CK, Jung KC, Park YJ, Won JK. Rare manifestations of anaplastic thyroid carcinoma: the role of BRAF mutation analysis. J Kor Med Sci. 2017;32(10):1721-1726.
42. Porta C, Paglino C, Mosca A. Targeting Pl3K/Akt/mTOR signaling in cancer. Front Oncol. 2014;4:64.
43. Fresno Vara JA, Casado E, de Castro J, Cejas P, BeldaIniesta C, Gonzalez-Baron M. Pl3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193-204.
44. Abraham RT. mTOR as a positive regulator of tumor cell responses to hypoxia. Curr Top Microbiol Immunol. 2004;279: 299-319.
45. Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 1999;59(15):3581-3587.
46.Matson DR,Hardin H, Buehler D,Lloyd RV. AKT activity is elevatedinaggressivethyroidneoplasmswhereitpromotes proliferation and invasion. Exp Mol Pathol. 2017;103(3): 288-293.
47.ChenCY,Chen J,He L, StilesBL.PTEN:tumor suppressorand metabolicregulator.FrontEndocrinol.2018;9:338.
48. Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol. 2018;19(9):547-562.
49.LiYH,XuKC,HuangGM,ZangHThefunction andmolecuar mechanism of CEP55 in anaplastic thyroid cancer. Eur Rev Med Pharmacol Sci. 2020;24(18):9549-9555.
50. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid. 2010;20(7): 697-706.
51. Garcia-Rostan G, Costa AM,Pereira-Castrol, et al.Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65(22):10199-10207.
52. Hou P, Liu D,Shan Y, et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 2007;13(4):1161-1170.
53. Gibson WJ, Ruan DT, Paulson VA, et al. Genomic heterogeneityandexceptionalresponsetodualpathwayinhibitionin anaplastic thyroid cancer. Clin Cancer Res. 2017;23(9): 2367-2373.
54.Lai WA,Liu CY,Lin SY,Chen CC,Hang JF.Characterization of driver mutations in anaplastic thyroid carcinoma identifies RAS and PIK3CA mutations as negative survival predictors. Cancers. 2020;12(7):1973.
55. Qin Y, Wang JR, Wang Y, et al. Clinical utility of circulating cell-free DNA mutations in anaplastic thyroid carcinoma. Thyroid.2021;31(8):1235-1243.
56.Murugan AK,LiuR, Xing MIdentification and characterization of two novel oncogenic mTOR mutations. Oncogene. 2019; 38(26):5211-5226.
57. Frisk T, Foukakis T, Dwight T, et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer. 2002;35(1):74-80.
58. Zhang P, Wang C, Ma T, You S. O-GlcNAcylation enhances the invasionofthyroidanaplasticcancercellspartiallyby Pl3K/Akt1 pathway. OncoTargets Ther. 2015;8:3305-3313.
59.Bu Q, You F, Pan G,et al.MiR-125b inhibits anaplastic thyroid cancercellmigrationandinvasionbytargetingPIK3CD.Biomed Pharmacother. 2017;88:443-448.
60. Zhong Y, Yu F, Yang L, et al. HOXD9/miR-451a/PSMB8 axis is implicated in theregulation of cell proliferation and metastasis via PI3K/AKT signaling pathway in human anaplastic thyroid carcinoma.J Transl Med.2023;21(1):817.
61. Chen S, Su X, Jiang X, et al. VCAM-1 upregulation contributes to insensitivity of vemurafenib in BRAF-mutant thyroid cancer. Transl Oncol. 2020;13(2):441-451.
62. Wang P, Shang J, Zhao J, et al. SRY-related HMG box-2 role in anaplastic thyroid cancer aggressiveness is related to the fibronectin 1 and PI3K/AKT pathway. Mol Med Rep.2020; 21(3):1201-1207.
63. Lv J, Liu C, Chen FK, et al. M2-like tumour-associated macrophage-secretedIGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol Med Rep.2021;24(2):604.
64. Song P, Xu H, He Y, et al. GAB1 is upregulated to promote anaplasticthyroidcancercellmigrationthroughAKT-MDR1. Biochem Biophys Res Commun.2022;607:36-43.
65. Gao H, Wang W, Li Q. GANT61 suppresses cell survival, invasionand epithelial-mesenchymal transition through inactivatingAKT/mTOR andJAK/STAT3 pathways in anaplastic thyroid carcinoma. Cancer Biol Ther. 2022;23(1): 369-377.
66. Zheng H, Lin Q, Rao Y. A-kinase interacting protein 1 knockdownrestoreschemosensitivityviainactivatingPI3K/AKTand β-catenin pathways in anaplastic thyroid carcinoma. Front Oncol. 2022;12:854702.
67. Gunda V, Bucur O, Varnau J, et al. Blocks to thyroid cancer cellapoptosiscanbeovercomebyinhibitionoftheMAPKand PI3K/AKT pathways. Cell Death Dis. 2014;5(3):e1104.
68. Byeon HK, Na HJ, Yang YJ, et al. c-Met-mediated reactivation of PI3K/AKT signaling contributes to insensitivity of BRAF(V600E)mutantthyroidcancer toBRAFinhibition.Mol Carcinog. 2016;55(11):1678-1687.
69.BeadellTC,assarKW,oseMM,t alrmediatd lation of the Pl3K pathway in advanced papillary and anaplastic thyroid cancer.Oncogenesis.2018;7(2):23.
70.Wong K,Di Cristofano F,Ranieri M,De Martino D,Di Cristofano A.PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer.Endocr Relat Cancer. 2019;26(4):425-436.
71. Nucera C,Eeckhoute J, Finn S, et al. FOXA1 is a potential oncogene in anaplastic thyroid carcinoma. Clin Cancer Res. 2009;15(11):3680-3689.
72.BellelliR,Castellone MD,Garcia-Rostan G,etal.FOxM1isa molecular determinant of the mitogenic and invasive phenotype of anaplastic thyroid carcinoma.Endocr Relat Cancer. 2012;19(5):695-710.
73.Marlow LA, von Roemeling CA, Cooper SJ, et al.Foxo3a drives proliferation in anaplastic thyroid carcinoma through transcriptional regulation of cyclin A1:a paradigm shift that impacts current therapeutic strategies. J Cell Sci. 2012;125(Pt 18):4253-4263.
74. Feng H, Jin Z, Liang J, et al. FOXK2 transcriptionally activating VEGFA induces apatinib resistance in anaplastic thyroid cancer through VEGFA/VEGFR1 pathway. Oncogene.2021; 40(42):6115-6129.
75. Ravera S, Reyna-Neyra A, Ferrandino G, Amzel LM, Carrasco N. The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annu Rev Physiol. 2017;79:261-289.
76.Schmohl KA,DolpP,Schug C,et al.Reintroducing the sodiumiodide symporter to anaplastic thyroid carcinoma. Thyroid. 2017;27(12):1534-1543.
77. ElMokh O, Taelman V, Radojewski P, et al. MEK inhibition induces therapeutic iodine uptake in a murine model of anaplastic thyroid cancer. J Nucl Med. 2019;60(7):917-923.
78. Oh JM, Baek SH, Gangadaran P, et al. A novel tyrosine kinase inhibitor can augment radioactive iodine uptake through endogenous sodium/iodide symporter expression in anaplastic thyroid cancer. Thyroid. 2020;30(4):501-518.
79. Xiong L, Nie JH, Lin XM, et al. Biological implications of PTEN upregulation and altered sodium/iodide symporter intracellular distribution in resveratrol-suppressed anaplastic thyroid cancer cells. J Cancer. 2020;11(23):6883-6891.
80. Wang J, Tan J, Wu B, et al. Customizing cancer treatment at the nanoscale: a focus on anaplastic thyroid cancer therapy. J Nanobiotechnol.2023;21(1):374.
81. Li Q, Zhang L,Lang J, et al. Lipid-peptide-mRNA nanoparticlesaugmentradioiodineuptakeinanaplasticthyroid cancer. Adv Sci. 2023;10(3):e2204334.
2.HuahanXf1nd by self-assembled CD44-targeted nanoparticlesfor anaplastic thyroid carcinoma theranostics. Adv Healthcare Mater. 2021; 10(3):e2001029.
83. Choi YJ, Lee JE, Ji HD, et al. Tunicamycin as a novel redifferentiationagentinradioiodinetherapyforanaplasticthyrnidranrar Int IMolCri 2021·22(3)·1077 84.AltmannA,MarkertA,AskoxylakisV,et al.Antitumoreffects ofproteasomeinhibitioninanaplasticthyroidcarcinoma.J Nucl Med. 2012;53(11):1764-1771.
85. Tesselaar MH, Crezee T, Schuurmans I, et al. Digitalislike compounds restore hNIS expression and iodide uptake capacity in anaplastic thyroid cancer. J Nucl Med. 2018;59(5): 780-786.
86.Singh TD, Jeong SY,Lee SW,et al.Inverse agonist of estrogenrelated receptor \boldsymbol{\upgamma} enhances sodium iodide symporter function through mitogen-activated protein kinase signaling in anaplastic thyroid cancer cells.J Nucl Med.2015;56(11): 1690-1696.
87. Kim J, Song J, Ji HD, et al. Discovery of potent, selective, and orally bioavailable estrogen-related receptor- γ inverse agonists to restore the sodium iodide symporter function in anaplastic thyroid cancer. J Med’ Chem. 2019;62(4): 1837-1858.
88. Singh TD, Song J, Kim J, et al. A novel orally active inverse agonist of estrogen-related receptor gamma (ERRy), DN200434, a booster of NIS in anaplastic thyroid cancer. Clin Cancer Res. 2019;25(16):5069-5081.
89. Wei W, Liu \scriptstyle\mathbf{Q}, Jiang D, et al. Tissue factor-targeted ImmunoPET imaging and radioimmunotherapy of anaplastic thyroid cancer.AdvSci.2020;7(13):1903595.
90. Lin R, Ma B, Liu N, et al. Targeted radioimmunotherapy with theiodine-131-labeled caerin 1.1peptide for“F human anaplastic thyroid cancer in nude mice. Ann Nucl Med. 2021; 35(7):811-822.
91. Gholami S, Haddad D, Chen CH, et al. Novel therapy for anaplastic thyroid carcinoma cells using an oncolytic vaccinia virus carrying the human sodium iodide symporter. Surgery. 2011;150(6):1040-1047.
92.ReddiH,Madde P,Monough SJ, et al.Preclinical efficay of the oncolytic measles virus expressing the sodium iodide symporter iniodine non-avid anaplastic thyroidcancer:a novel therapeutic agent allowing noninvasive imaging and radioiodine therapy.CancerGeneTher.2012;19(9):659-665.
93.So Y,Lee J,eeWW,Chung JK.Detemination of theoptmal timeforradioiodinetherapyinanaplasticthyroidcarcinoma using the adenovirus-mediated transfer of sodium iodide symporter gene. Oncol Rep. 2013;29(4):1666-1670.
94. Chen ST, Shieh HY, Lin JD, Chang KS, Lin KH. Overexpression ofthyroidhormonereceptorbeta1isassociatedwiththyrotropinreceptorgeneexpression andproliferationinahuman thyroid carcinoma cell line. J Endocrinol. 2000;165(2): 379-389.
95. Bolf EL, Gillis NE, Davidson CD, et al. Thyroid hormone receptorbeta induces a tumor-suppressive program in anaplastic thyroid cancer. Mol Cancer Res. 2020;18(10): 1443-1452.
96. Davidson CD, Bolf EL, Gillis NE,Cozzens LM, Tomczak JA, Carr FE. Thyroid hormone receptor beta inhibits Pl3K-aktmTORsignalingaxisinanaplasticthyroidcancerviagenomic mechanisms. J Endocr Soc. 2021;5(8):bvab102.
97. Gillis NE, Cozzens LM, Wilson ER, et al. TRβ agonism induces tumorsuppressionandenhancesdrugefficacyinanaplastic thyroid cancer infemale mice.Endocrinology.2023;164(10): bqad135.
98. Lee Doolittle WK, Zhu X, Park S, et al. Regulation of cancer stem cell activity by thyroid hormone receptor β. Oncogene. 2022;41(16):2315-2325.
99.Zhu X, Zhao L, Doolittle WKL, Cheng SY. Reactivated thyroid hormone receptor \upbeta attenuates anaplastic thyroid cancer (ATC) stem cell activity. Endocr Relat Cancer. 2023;30(6): e220306.
100. Cao Z, Gao Q, FuM, Ni N, Pei Y, Ou WB. Anaplastic lymphoma kinasefusions:rolesincancer andtherapeuticperspectives. OncolLett.2019:17(2):2020-2030.
101. Zhang L, Ren Z, Su Z, et al. Novel recurrent altered genes in Chinese patients with anaplastic thyroid cancer. J Clin Endocrinol Metab. 2021;106(4):988-998.
102. Duan H, Li Y, Hu P, et al. Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next-generation sequencing. Histopathology. 2019; 75(6):890-899.
103. Kunstman JW, Juhlin CC, Goh G,et al. Characterization of the mutational landscapeofanaplasticthyroidcancerviawholeexome sequencing. Hum Mol Genet. 2015;24(8):2318-2329.
104.WangJR,Montierth M,XuL,etal.Impactofsomaticmutations on survival outcomes in patients with anaplastic thyroid carcinoma.JCO Precis Oncol.2022;6:e2100504.
105. Bonhomme B, Godbert Y, Perot G, et al.Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. Thyroid. 2017;27(5):682-692.
106. Nozaki Y, Yamamoto H, Iwasaki T, et al. Clinicopathological features and immunohistochemical utility of NTRK-, ALK-, and ROS1-rearranged papillary thyroid carcinomas and anaplastic thyroid carcinomas. Hum Pathol. 2020;106:82-92.
107. Kelly LM, Barila G, Liu P, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci USA.2014;111(11):4233-4238.
108. Nikitski AV, Rominski SL, Condello V, et al. Mouse model of thyroid cancer progression and dedifferentiation driven by STRN-ALK expression and loss of p53: evidence for the existence of two types of poorly differentiated carcinoma. Thyroid.2019;29(10):1425-1437.
109. Murugan AK, Xing M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res. 2011; 71(13):4403-4411.
110. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation.Development.2013;140(15):3079-3093.
111. Bury M, Le Calvé B,Ferbeyre G, Blank V, Lessard F. New insights into CDK regulators: novel opportunities for cancer therapy. Trends Cell Biol. 2021;31(5):331-344.
112. Yoo SK, Song YS, Lee EK, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 2019;10(1): 2764.
113. Stenman A, Yang M, Paulsson JO, Zedenius J, Paulsson K, Juhlin CC.Pan-genomic sequencing reveals actionable CDKN2A/2B deletions and kataegis in anaplastic thyroid carcinoma. Cancers. 2021;13(24):6340.
114. Yang HL, Pan JX, Sun L, Yeung SCJ. p21 Waf-1 (cip-1) enhances apoptosis induced by manumycin and paclitaxel in anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 2003;88(2):763-772.
115. Franzen A, Heldin NE. BMP-7-induced cell cycle arrest of anaplastic thyroid carcinoma cells via p21(CIP1) and p27(KIP1). Biochem Biophys Res Commun. 2001;285(3): 773-781.
116. Greenberg VL, Williams JM, Boghaert E, Mendenhall M, Ain KB, Zimmer SG. Butyrate alters the expression and activity of cell cycle components in anaplastic thyroid carcinoma cells. Thyroid. 2001;11(1):21-29.
117. Chen MC, Tsai YC, Tseng JH, et al. Simvastatin inhibits cell proliferationandmigrationinhuman anaplasticthyroidcancer.Int J Mol Sci.2017;18(12):2690.
118. Zhang L, Lian R, Zhao J, et al.IGFBP7 inhibits cell proliferation by suppressing AKT activity and cell cycle progression in thyroid carcinoma.Cell Biosci.2019;9:44.
119. McKelvey BA, Umbricht CB,Zeiger MA.Telomerase reverse transcriptase (TERT) regulation in thyroid cancer: a review. Front Endocrinol.2020;11:485.
120. Shi X, Liu R, Qu S, et al. Association of TERT promoter mutation 1,295,228 C>T with BRAF V600E mutation, older patientage,anddistantmetastasis inanaplasticthyroid cancer.JClin Endocrinol Metab.2015;100(4):E632-E637.
121. Su X, Jiang X, Wang W, et al. Association of telomerase reversetranscriptasepromotermutationswithclinicopathologicalfeaturesandprognosisofthyroidcancer:ametaanalysis. OncoTargets Ther. 2016;9:6965-6976.
122. Xu B,Zhang L, Setoodeh R, et al. Prolonged survival of anaplastic thyroid carcinoma is associated with resectability, low tumor-infiltrating neutrophils/myeloid-derived suppressor cells,andlowperipheralneutrophil-to-lymphocyteratio. Endocrine. 2022;76(3):612-619.
123. Oishi N, Kondo T, Ebina A, et al. Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: identification of TERT mutation as an independent risk factor for transformation. ModPathol. 2017;30(11): 1527-1537.
124. Odate T, Oishi N, Kawai M, et al. Progression of papillary thyroid carcinoma to anaplastic carcinoma in metastatic lymphnodes:solid/insulargrowthandhobnailcellchangein lymphnodesarepredictorsofsubsequentanaplastictransformation. Endocr Pathol. 2021;32(3):347-356.
125.Vaddavalli PL, Schumacher B. The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet. 2022;38(6):598-612.
126. Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018;25(1):154-160.
127. Evans JJ, Crist HS, Durvesh S, Bruggeman RD, Goldenberg D.A comparativestudyofcellcyclemediatorproteinexpression patternsinanaplasticandpapillary thyroidcarcinoma.Cancer Biol Ther. 2012;13(9):776-781.
128. Lam KY, Lo CY, Chan KW, Wan KY. Insular and anaplastic carcinomaofthethyroid:a45-yearcomparativestudyata single institution and a review of the significance of p53 and p21. Ann Surg. 2000;231(3):329-338.
129. Asakawa H, Kobayashi T. Multistep carcinogenesis in anaplastic thyroid carcinoma: a case report. Pathology. 2002;34(1): 94-97.
130. Nikitski AV, Nikiforova MN, Yip L, Karslioglu-French E, Carty SE, Nikiforov YE. Can TP53-mutant follicular adenoma be a precursor of anaplastic thyroid carcinoma?Endocr Relat Cancer. 2021;28(9):621-630.
131. Boltze C, Roessner A, Landt O, Szibor R, Peters B, SchneiderStock R. Homozygous proline at codon 72 of p53 as a potential riskfactorfavoringthedevelopmentofundifferentiated thyroid carcinoma. Int J Oncol. 2002;21(5):1151-1154.
132. Sadow PM, Dias-Santagata D,Zheng Z,Lin DT, Le LP, NuceraC.Identificationof insertions inPTENandTP53in anaplastic thyroid carcinoma with angiogenic brain metastasis.Endocr Relat Cancer. 2015;22(6):L23-L28.
133. RomeiC, Tacito A, Molinaro E,et al. Clinical, pathological and geneticfeatures of anaplastic and poorly differentiated thyroid cancer: a single institute experience. Oncol Lett.2018; 15(6):9174-9182.
134. Kuhn E, Ragazzi M, Ciarrocchi A, et al. Angiosarcoma and anaplastic carcinoma of the thyroid are two distinct entities: a morphologic, immunohistochemical, and genetic study. Mod Pathol. 2019;32(6):787-798.
135. Chien CC, Wu MS, Chou SW, Jargalsaikhan G, Chen YC.Roles of reactive oxygen species, mitochondrial membrane potential,andp53inevodiamine-inducedapoptosis andG2/M arrest of human anaplastic thyroid carcinoma cells. Chin Med. 2021;16(1):134.
136. Lavra L, Ulivieri A, Rinaldo C, et al. Gal-3 is stimulated by gainof-functionp53mutationsandmodulateschemoresistancein anaplastic thyroid carcinomas. J Pathol. 2009;218(1):66-75.
137. McFadden DG, Vernon A, Santiago PM, et al. p53 constraints progressiontoanaplasticthyroidcarcinomainaBraf-mutant mouse model of papillary thyroid cancer.Proc Natl Acad Sci USA.2014;111(16):E1600-E1609.
138.Tsuchida N,Ikeda MA,Ishino U,Grieco M,Vecchio G.FUCA1is induced by wild-type p53 and expressed at different levels in thyroid cancers depending on p53 status. Int J Oncol. 2017; 50(6):2043-2048.
139. Arancio W, Carina V, Pizzolanti G, et al. Anaplastic thyroid carcinoma:a ceRNA analysis pointed to a crosstalk between SOX2,andmcrobigenesitndcril 2015;2015:439370.
140. Kim TH, Lee SY, Rho JH, et al. Mutant p53 (G199V) gains antiapoptotic function through signal transducer and activator of transcription 3 in anaplastic thyroid cancer cells.Mol Cancer Res.2009;7(10):1645-1654.
141. Guida T, Salvatore G, Faviana P, et al. Mitogenic effects of the up-regulationofminichromosomemaintenanceproteinsin anaplastic thyroid carcinoma. J Clin Endocrinol Metab. 2005; 90(8):4703-4709.
142. Orlandella FM, Mariniello RM, lervolino PLC, et al. Junctional adhesion molecule-A is down-regulated in anaplastic thyroid carcinomas and reduces cancer cell aggressiveness by modulating p53 and GSK3 α/β pathways. Mol Carcinog. 2019;58(7): 1181-1193.
143.Rim EY, Clevers H, Nusse R.The Wnt pathway: from signaling mechanisms to synthetic modulators. Annu Rev Biochem. 2022;91:571-598.
144. van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H. Wnt signaling controls the phosphorylation status of betacatenin. J Biol Chem. 2002;277(20):17901-17905.
145. Chatterjee A, Paul S,Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK. Advances in targeting the WNT/β-catenin signaling pathway in cancer.Drug Discov Today. 2022;27(1):82-101.
146.Kurihara T, Ikeda S, Ishizaki Y, et al. Immunohistochemical and sequencing analyses of the Wnt signaling components in Japanese anaplastic thyroid cancers. Thyroid. 2004;14(12): 1020-1029.
147. Jiang L, Zhang S, An N, Chai G, Ye C.ASPM promotes the progressionofanaplasticthyroidcarcinomasbyregulatingthe Wnt/ \boldsymbol{*}\boldsymbol{β} -catenin signaling pathway. Internet J Endocrinol. 2022;2022:5316102.
148. Li Y. Pyrvinium pamoate can overcome artemisinin's resistance in anaplastic thyroid cancer. BMC Complement Med Ther. 2021;21(1):156.
149.Abbosh PH,Li X,Li L,Gardner TA,Kao C,Nephew KP.A conditionally replicative, Wnt/beta-catenin pathway-based adenovirus therapy for anaplastic thyroid cancer. Cancer Gene Ther. 2007;14(4):399-408.
150. Meng X, Cui Z, Shi H, et al. Ellagic acid inhibits cell proliferation, migration,and invasion of anaplastic thyroid cancer cells via the Wnt/ \upbeta -catenin and Pl3K/Akt pathways.Acta BiochimPol.2023;70(1):109-115.
151. Dabravolski SA,Nikiforov NG,Zhuravlev AD, Orekhov NA, Mikhaleva LM,OrekhovAN.The role of altered mitochondrial metabolisminthyroidcancerdevelopmentandmitochondriatargeted thyroid cancertreatment.IntJMolSci.2021;23(1): 460.
152. Johnson JM, Lai SY, Cotzia P, et al. Mitochondrial metabolism as a treatment target in anaplastic thyroid cancer. Semin Oncol. 2015;42(6):915-922.
153.Lee SE, Park S, Yi S, et al. Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by multi-omics analyses. Nat Commun. 2024;15(1): 1163.
154. Sugarman AJ,Huynh LD,Shabro A, DiCristofano A.Anaplastic thyroid cancer cells upregulate mitochondrial one-carbon metabolism to meet purine demand, eliciting a critical taraetahlevulnerahilityCanrorlott 2023-568·216304
155. Cristinziano L, Modestino L, Loffredo S, et al. Anaplastic thyroid cancer cells induce the release of mitochondrial extracellular DNA traps by viable neutrophils. J Immunol. 2020;204(5):1362-1372.
156. Liu ZM, Chen GG, Vlantis AC, Liang NC, Deng YF, van Hasselt CA. Cell death induced by ent-11alpha-hydroxy-15- oxo-kaur-16-en-19-oic-acid in anaplastic thyroid carcinoma cells is via a mitochondrial-mediatedpathway.Apoptosis. 2005;10(6):1345-1356.
157. Shin HA, Cha YY, Park MS, Kim JM, Lim YC. Diallyl sulfide induces growth inhibition and apoptosis of anaplastic thyroid cancer cells by mitochondrial signaling pathway. Oral Oncol. 2010;46(4):e15-e18.
158. Yu K, Wang T, Li Y, et al. Niclosamide induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in human thyroid cancer in vitro. Biomed Pharmacother.2017;92:403-411.
159. LiL, Wang X, Sharvan R, Gao J, Qu S. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3KAKT and MAPK signaling pathways. Biomed Pharmacother. 2017;95:1225-1231.
160. Zheng J, Cheng X, Xu S, et al. Diallyl trisulfide induces G2/M cell-cyclearrestandapoptosis inanaplasticthyroidcarcinoma 8505C cells.Food Funct.2019;10(11):7253-7261.
161.Xu S,ChengX,Wu L,et al.Capsaicin induces mitochondrial dysfunctionandapoptosisin anaplastic thyroidcarcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell Signal. 2020;75:109733.
162. Conticello C,Adamo L, Giuffrida R,et al.Proteasome inhibitors synergize with tumor necrosis factor-related apoptosis-induced ligand to induce anaplastic thyroid carcinoma cell death. J Clin Endocrinol Metab. 2007;92(5):1938-1942.
163. Bikas A, Jensen K, Patel A, et al. Mitotane induces mitochondrial membrane depolarization and apoptosis in thyroid cancer cells. Int J Oncol. 2019;55(1):7-20.
164.Yu Q,Jiang W,Li D,et al.Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo. Oncol Lett. 2019;17(5): 4255-4262.
165. Saini S, Sripada L, Tulla K, et al.Loss of MADD expression inhibits cellulargrowthandmetastasisinanaplasticthyroid cancer. Cell Death Dis.2019;10(2):145.
166. Saini S, Sripada L, Tulla K, et al. MADD silencing enhances anti-tumor activityofTRAlLinanaplastic thyroidcancer. Endocr Relat Cancer. 2019;26(6):551-563.
167.LiY.Inactivation ofPDHcanreduce anaplasticthyroid cancer cells’ sensitivity to artemisinin.Anti Cancer Agents Med Chem. 2022;22(9):1753-1760.
168. Li \scriptstyle{\mathsf{Q}}, Weina P.Artesunate: the best drug in the treatment of severe and complicated malaria. Pharmaceuticals. 2010;3(7): 2322-2332.
169. Ma L,Fei H.Antimalarial drug artesunate is effective against chemoresistant anaplastic thyroid carcinoma via targeting mitochondrial metabolism. J Bioenerg Biomembr.2020;52(2): 123-130.
170. Guo YW, Zhu L, Duan YT, et al. Ruxolitinib induces apoptosis and pyroptosis of anaplastic thyroid cancer via the transcriptional inhibition of DRP1-mediated mitochondrial fission. Cell Death Dis.2024;15(2):125.
171. Lv Z, Yan X, Lu L, Su C, He Y. Atovaquone enhances doxorubicin's efficacy via inhibiting mitochondrial respiration and STAT3 in aggressive thyroid cancer.J Bioenerg Biomembr. 2018;50(4):263-270.
172.LiZ, Jiang X, Chen P, Wu X, Duan A, Qin Y. Combined effects of octreotide and cisplatin on the proliferation of side populationcellsfrom anaplasticthyroid cancer celllines.Oncol 1ott2018:16/3)-4033-4042
173.Biswas R,Chung PS,Moon JH,Lee SH,Ahn JC.Carboplatin synergistically triggers the efficacy of photodynamic therapy via caspase 3-, 8-,and 12-dependent pathways in human anaplastic thyroid cancer cells. Laser Med Sci. 2014;29(3): 995-1007.
174.Biswas R, Mondal A, Ahn JC.Deregulation of EGFR/PI3K and activation of PTEN by photodynamic therapy combined with carboplatin in human anaplastic thyroid cancer cells and xenograft tumors in nude mice. J Photochem Photobiol, B. 2015;148:118-127.
175. Bible KC,Kebebew E, Brierley J,et al. 2021 American thyroid association guidelines for management of patients with anaplastic thyroid cancer.Thyroid.2021;31(3):337-386.
176. Prasongsook N, Kumar A, Chintakuntlawar AV, et al. Survival in response to multimodal therapy in anaplastic thyroid cancer.JClinEndocrinol Metab.2017;102(12):4506-4514.
177.Foote RL,Molina JR, Kasperbauer JL,et al.Enhanced survival inlocoregionallyconfinedanaplasticthyroidcarcinoma:a single-institution experience using aggressive multimodal therapy. Thyroid. 2011;21(1):25-30.
178. Rao SN,Zafereo M, Dadu R, et al. Patterns of treatment failurein anaplasticthyroid carcinoma.Thyroid.2017;27(5): 672-681.
179. Fan D, Ma J, Bell AC, et al. Outcomes of multimodal therapy in a large series of patients with anaplastic thyroid cancer. Cancer. 2020;126(2):444-452.
180. Sugitani l, Miyauchi A, Sugino K, Okamoto T, Yoshida A, Suzuki s. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma:ATC Research Consortium of Japan cohort study of 677 patients. World J Surg. 2012;36(6): 1247-1254.
181. Wachter S, Vorländer C, Schabram J, et al. Anaplastic thyroid carcinoma:changingtrendsoftreatmentstrategiesand associated overall survival.Eur Arch Oto-Rhino-Laryngol. 2020;277(5):1507-1514.
182. Molinaro E, Romei C, Biagini A, et al. Anaplastic thyroid carcinoma:fromclinicopathologytogeneticsandadvanced therapies. Nat Rev Endocrinol. 2017;13(11):644-660.
183.Milosevic Z,Pesic M,StankovicT,et al.TargetingRAS-MAPKERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl Res. 2014;164(5):411-423.
184.Zhao X, Wang JR, Dadu R, et al. Surgery after BRAF-directed therapyisassociatedwithimprovedsurvivalinBRAFV0E mutant anaplastic thyroid cancer: a single-center retrospective cohort study. Thyroid. 2023;33(4):484-491.
185.Park J, Jung HA, Shim JH, et al. Multimodal treatments and outcomes for anaplastic thyroid cancer before and after tyrosine kinase inhibitor therapy: a real-world experience. EurJEndocrinol.2021;184(6):837-845.
186. Maniakas A, Dadu R,Busaidy NL, et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000- 2019. JAMA Oncol. 2020;6(9):1397-1404.
187. Liang J, Jin Z, Kuang J, et al. The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGFEGFR signalling in anaplastic thyroid cancer angiogenesis. Br J Cancer. 2021;125(3):390-401.
188. Wu J, Liang J, Liu R, et al. Autophagic blockade potentiates anlotinib-mediated ferroptosis in anaplastic thyroid cancer. EndocrRelatCancer.2023;30(9):e230036.
189. Zheng X, Wang J, Ye T, et al. Efficacy and safety of anlotinibbased chemotherapy for locally advanced or metastatic anaplastic thyroid carcinoma. Endocrine. 2023;81(3): 540-546.
190. Feng H, Cheng X, Kuang J, et al. Apatinib-induced protective autophagy and apoptosis through the AKT-mTOR pathway in ananlacticthvroid CellDenthDic2018:9(10).1030
191. Cheng L, Jiao \mathsf{Q}, Jin Y, Fu H, Zhang H, Chen L. Initial therapy of advanced anaplastic thyroid cancer via targeting VEGFR-2: a case report. Onco Targets Ther. 2019;12:10495-10500.
192. Niu Y, Ding Z, Deng X, et al. A novel multimodal therapy for anaplastic thyroid carcinoma:125|seed implantation plus apatinib after surgery.Front Endocrinol. 2020;11:207.
193.Zhao Q, Feng H, Yang Z, et al. The central role of a two-way positivefeedbackpathwayinmoleculartargetedtherapiesmediated pyroptosis in anaplastic thyroid cancer. Clin Transl Med. 2022;12(2):e727.
194.Ferrari SM,Bocci G,Di Desidero T,et al.Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in vitro and in vivo. Oncol Rep. 2018;39(5):2225-2234.
195. Wang R, Yamada T, Arai S, et al. Distribution and activity of lenvatinib in brain tumor models of human anaplastic thyroid cancercellsinseverecombinedimmunedeficientmice.Mol Cancer Therapeut. 2019;18(5):947-956.
196.lesato A,Li S, Sadow PM,et al. The tyrosine kinase inhibitor lenvatinib inhibits anaplastic thyroid carcinoma growth by targeting pericytes in the tumor microenvironment. Thyroid.
2023;33(7):835-848.
197. Yamazaki H, Yokose T, Hayashi H, et al. Expression of vascular endothelial growth factor receptor 2 and clinical response to lenvatinib in patients with anaplastic thyroid cancer. Cancer ChemotherPharmacol.2018;82(4):649-654.
198.Zhou J, Ma L, Li Z, Chen B, Wu Y, Meng X. Synthesis of lenvatinib-loadedupconversion@polydopaminenanocomposites for upconversion luminescence imaging-guided chemo-photothermal synergistic therapy of anaplastic thyroid cancer. RSC Adv. 2023;13(38):26925-26932.
199. Su X, Liu J, Zhang H, et al. Lenvatinib promotes the antitumor effectofdoxorubicininanaplasticthyroidcancer.OncoTargets Ther. 2020;13:11183-11192.
200.Lee YS,Kim SM, Kim BW, et al.Anti-cancer effects of HNHA and lenvatinib by the suppression of EMT-mediated drug resistance in cancer stem cells. Neoplasia. 2018;20(2):
197-206.
201. Kawamura Y, Saijo K, Imai H, Ishioka C. Inhibition of IRAK1/4 enhances the antitumor effect of lenvatinib in anaplastic thyroid cancer cells. Cancer Sci. 2021;112(11):4711-4721.
202. Enomoto K, Hirayama S, Kumashiro N, et al. Synergistic effects of lenvatinib (E7080) and MEK inhibitors against anaplastic thyroid cancer in preclinical models. Cancers.
2021;13(4):862.
203. Jing C, Gao Z, Wang R, Yang Z, Shi B, Hou P. Lenvatinib enhances the antitumor effects of paclitaxel in anaplastic thyroid cancer. Am J Cancer Res. 2017;7(4):903-912.
204. Di Desidero T, Orlandi P, Gentile D,et al. Pharmacological effects of vinorelbine in combination with lenvatinib in anaplasticthyroidcancer.PharmacolRes.2020;158:104920.
205.Gunda,igliottiB,AshryT,et al.AntiPD1/PD1 tha augmentslenvatinib'sefficacybyfavorablyalteringtheimmunemicroenvironmentofmurineanaplasticthyroidcancer. Int J Cancer. 2019;144(9):2266-2278.
206. Hamamoto T, Kono T, Taruya T, Ishino T, Ueda T, Takeno S. A long survival patient of anaplastic thyroid carcinoma treated with lenvatinib. Auris Nasus Larynx. 2022;49(3):515-519.
207. Luongo C, Porcelli T, Sessa F, et al. Combination of lenvatinib and pembrolizumab as salvage treatment for paucicellular variant of anaplastic thyroid cancer: a case report. Curr Oncol.2021;28(6):5401-5407.
208. Osawa Y, Gozawa R, Koyama K, Nakayama T, Sagoh T, Sunaga H.Posterior reversible encephalopathy syndrome afterlenvatinibtherapyinapatientwithanaplasticthyroid carcinoma.Intern Med.2018;57(7):1015-1019.
209. Lee HN, Chung WS, Jang HJ, Jee S, Tae K. Bilateral pneumothnrav tiant rith lacticf cinnmaand lung metastasis during lenvatinib therapy: a case report. Gland Surg. 2020;9(5):1579-1583.
210. Iniguez-Ariza NM, Ryder MM, Hilger CR, Bible KC. Salvage lenvatinib therapy in metastatic anaplastic thyroid cancer. Thyroid. 2017;27(7):923-927.
211. Huang D, Zhang J, Zheng X, Gao M.Efficacy and safety of lenvatinib in anaplastic thyroid carcinoma: a meta-analysis. Front Endocrinol. 2022;13:920857.
212.FerrariMiagusa,t alntnplastiactivitf pazopanib in anaplastic thyroid cancer in primary culture. Int JMolSci.2023;24(3):2398.
213. Isham CR, Bossou AR, Negron V, et al. Pazopanib enhances paclitaxel-induced mitotic catastrophe in anaplastic thyroid cancer. Sci Transl Med. 2013;5(166):166ra3.
214. Di Desidero T, Orlandi P, Gentile D, Bocci G. Effects of pazopanib monotherapy vs.pazopanib and topotecan combination on anaplastic thyroid cancer cells. Front Oncol. 2019;9:1202.
215. Bible KC, Suman VJ, Menefee ME,et al. A multinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer.J Clin Endocrinol Metab.2012; 97(9):3179-3184.
216. Sherman EJ, Harris J, Bible KC, et al. Radiotherapy and paclitaxelpluspazopaniborplaceboinanaplasticthyroid cancer (NRG/RTOG 0912): a randomised, double-blind, placebo-controlled, multicentre, phase 2 trial. Lancet Oncol. 2023;24(2):175-186.
217.D'gstinM,ceP,ClanMt al.unitinb xertsnl limitedeffectsontheproliferationanddifferentiationof anaplastic thyroid cancer cells. Thyroid. 2012;22(2):138-144.
218. Chen G, Nicula D, Renko K, Derwahl M. Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells. Oncol Rep. 2015;33(4):1994-2000.
219. Park KC, Kim SM, Jeon JY, et al. Synergistic activity of N-hydroxy-7-(2-naphthylthio)heptanomideandsorafenibagainst cancer stem cell, anaplastic thyroid cancer.Neoplasia.2017; 19(3):145-153.
220. Lu YL, Huang YT, Wu MH, Chou TC, Wong RJ, Lin SF. Efficacy of adavosertibtherapyagainstanaplasticthyroidcancer.Endocr Relat Cancer. 2021;28(5):311-324.
221.Zhu W, Xie B. PLK4 inhibitor exhibits antitumor effect and synergizessorafenibviaarrestingcellcycleandinactivating Wnt/β-cateninpathwayinanaplasticthyroidcancer.Cancer BiolTher.2023;24(1):2223383.
222.Abdulghani J, Gokare P, Gallant JN, et al. Sorafenib and quinacrine target anti-apoptotic protein MCL1: a poor prognosticmarkerinanaplasticthyroid cancer(ATC).ClinCancer Res. 2016;22(24):6192-6203.
223. Cohen SM, MukerjiR,Timmermann BN, Samadi AK, Cohen MS.A novel combination of withaferin A and sorafenib shows synergistic efficacy against both papillary and anaplastic thyroid cancers. Am J Surg. 2012;204(6):895-900. discussion 900-1.
224.Yu,Kim,Kim,etal.ergistianticanceractivitf N-hydroxy-7-(2-naphthylthio)heptanomide,sorafenib,and radiation therapy in patient-derived anaplastic thyroid cancer models. Int J Mol Sci. 2021;22(2):536.
225.Kim SY, Kim SM,Chang H, Chang HS, Park CS,Lee YS.yergistic anticancer activity of sorafenib,paclitaxel,and radiation therapy on anaplastic thyroid cancer in vitro and in vivo. Head Neck. 2020;42(12):3678-3684.
226. Di Desidero T, AntonelliA, OrlandiP, et al. Synergistic efficacy ofirinotecanandsunitinibcombinationinpreclinicalmodels of anaplastic thyroid cancer. Cancer Lett.2017;411:35-43.
227. Schoenfeld JD, Odejide OO, Wirth LJ, Chan AW. Survival of a patient with anaplastic thyroid cancer following intensitymodulated radiotherapy and sunitinib: a case report. Antinas 0042.22/51.4742 474L
228. Grande E, Capdevila J, Diez JJ, Longo F, Carrato A. A significant response to sunitinib in a patient with anaplastic thyroid carcinoma.JResMed Sci.2013;18(7):623-625.
229. Gule MK, Chen Y, Sano D, et al. Targeted therapy of VEGFR2 and EGFR significantly inhibits growth of anaplastic thyroid cancer in an orthotopic murine model. Clin Cancer Res.2011; 17(8):2281-2291.
230. Ferrari SM, Bocci G, Di Desidero T, et al. Vandetanib has antineoplastic activity in anaplastic thyroid cancer, in vitro and in vivo. Oncol Rep. 2018;39(5):2306-2314.
231.Ferrari SM, la Motta C, Elia G, et al. Antineoplastic effect of lenvatinib and vandetanib in primary anaplastic thyroid cancercells obtainedfrombiopsy orfineneedleaspiration.Front Endocrinol.2018;9:764.
232. Wunderlich A, KhoruzhykM, Roth S, et al. Pretherapeutic drug evaluation by tumor xenografting in anaplastic thyroid cancer. J Surg Res. 2013;185(2):676-683.
233. Kurata K, Onoda N, Noda S, et al. Growth arrest by activated BRAF and MEK inhibition in human anaplastic thyroid cancer cells. Int J Oncol. 2016;49(6):2303-2308.
234.GundaV,hoshC,HuJ,et al.mbinatn B R A F^{V600E} inhibitionwiththemultitargetingtyrosinekinaseinhibitor axitinibshowsadditiveanticanceractivitin B R A F^{V600E} mutant anaplastic thyroid cancer. Thyroid. 2023;33(10):1201-1214.
235.Birden N,Selvi Gunel N,Ozates NP,et al.The effects of Epigallocatechin-3-gallate and Dabrafenib combination on apoptosis and the genes involved in epigenetic events in anaplastic thyroid cancer cells. Med Oncol. 2022;39(5):98.
236.Choi YS,Kwon H,You MH,et al.Effects of dabrafenib and erlotinibcombinationtreatmentonanaplasticthyroidcarcinoma. Endocr Relat Cancer.2022;29(6):307-319.
237. Liao Y, Gao Y, Chang A, et al. Melatonin synergizes BRAFtargetingagentdabrafenibforthetreatmentofanaplastic thyroid cancer by inhibiting AKT/hTERTsignalling.J Cell Mol Med. 2020;24(20):12119-12130.
238.Ng TSC,Hu H,Kronister S,et al.Overcoming differential tumor penetration of BRAF inhibitors using computationally guided combination therapy. Sci Adv. 2022;8(17):eabl6339.
239.Bagheri-Yamand R,BusaidyNLMeathE,et alRACl terationsinduceacquireddabrafenibresistanceinassociation withanaplastictransformationinapapillarythyroidcancer patient. Cancers. 2021;13(19):4950.
240. Tang T, Zhou J, Zhang LX,et al.Targeting SHP2 reverses BRAF inhibitor tolerance in anaplastic thyroid carcinoma. Anti Cancer Agents Med Chem. 2023. https: //doi.org/10.2174/18715206236662302140931222023.
241. Nehs MA, Nucera C, Nagarkatti SS, et al. Late intervention withanti-BRAF(V600E)therapyinducestumorregressionin an orthotopicmousemodelofhuman anaplasticthyroidcancer. Endocrinology. 2012;153(2):985-994.
242. Nehs MA, Nagarkatti S, Nucera C, Hodin RA, Parangi S. ThyroidectomywithneoadjuvantPLX4720extendssurvivaland decreases tumor burden in an orthotopic mouse model of anaplastic thyroid cancer. Surgery. 2010;148(6):1154-1162. discussion1162.
243. Gunda V, Gigliotti B,Ndishabandi D,et al. Combinations of BRAFinhibitorandanti-PD-1/PD-L1antibodyimprovesurvival andtumour immunity inanimmunocompetentmodelof orthotopic murine anaplastic thyroid cancer. Br J Cancer. 2018;119(10):1223-1232.
244. Crespo-Rodriguez E, Bergerhoff K, Bozhanova G, et al. Combining BRAFinhibition with oncolytic herpes simplex virus enhances the immune-mediated antitumor therapy of BRAFmutant thyroid cancer.JImmunother Cancer.2020;8(2): e000698.
245. Pilli T, Cantara S, Marzocchi C,Pacini F, Prabhakar BS, Castagna MG. Vemurafenib may overcome TNF-related apoptosis-inducing ligand (TRAIL) resistance in anaplastic thyroid cancer cells.Endocrine.2020;67(1):117-123.
246. Lu Y, Zhao Y, Liu P, Xu X. Vemurafenib activates the sonic hedgehogpathwayandpromotesthyroidcancerstemcell self-renewal.Endocr Relat Cancer.2023;30(11):e220392.
247. Kim SH, Kang JG, Kim CS, et al. Akt inhibition enhances the cytotoxic effect of apigenin in combination with PLX4032 in anaplastic thyroid carcinoma cells harboring BRAFV60OE. J Endocrinol Invest. 2013;36(11):1099-1104.
248. Kim SH, Shin HY, Kim YS, et al. Tunicamycin induces paraptosis potentiated by inhibition of BRAFV60OE in FRO anaplastic thyroid carcinoma cells. Anticancer Res.2014; 34(9):4857-4868.
249.Durai Ravindran S,Arvind K, Karunagaran D, Vijayalakshmi R. Synergistic effect of metformin and vemurufenib (PLX4032) as a molecular targeted therapy in anaplasticthyroidcancer:aninvitrostudy.MolBiolRep. 2021;48(11):7443-7456.
250. Wang Y, Hu Z, Ma W, et al. Signal transducer and activator of transcription3inhibitionalleviatesresistancetoBRAFinhibition in anaplastic thyroid cancer. Invest N Drugs. 2021; 39(3):764-774.
251.Rosove MH, Peddi PF, Glaspy JA. BRAF V600E inhibition in anaplastic thyroid cancer. N Engl J Med. 2013;368(7): 684-685.
252. Prager GW, Koperek O, Mayerhoefer ME, et al. Sustained reponsetemurafenibinAmutatdanalasti thyroid carcinoma patient.Thyroid.2016;26(10):1515-1516.
253. Marten KA, Gudena VK. Use of vemurafenib in anaplastic thyroid carcinoma: a case report.Cancer Biol Ther.2015; 16(10):1430-1433.
254.Menachem A,BodnerO,PastorJ,RazA,KloogY.Inhibition of malignant thyroid carcinoma cell proliferation by Ras and galectin-3 inhibitors. Cell Death Dis. 2015;1:15047.
255.haChPCur enhances the efficacy of photodynamic therapy in anaplastic thyroid cancer through Ras/RAF/MEK/ERK pathway suppression. J Photochem Photobiol, B. 2018;179:46-53.
256.Zhu X, Park S, Lee WK, Cheng SY. Potentiated anti-tumor effects of BETi byMEKiin anaplasticthyroidcancer.Endocr Relat Cancer. 2019;26(9):739-750.
257. Ingeson-Carlsson C, Martinez-Monleon A, Nilsson M. Differential effects of MAPK pathway inhibitors on migration and invasivenessofBRAF(V600E)mutantthyroidcancercellsin2D and 3D culture. Exp Cell Res. 2015;338(2):127-135.
258.ZaballMcRzMorantMcizair Crespo P, Santisteban P. Inhibiting ERK dimerization amelioratesBRAF-driven anaplastic thyroid cancer.Cell Mol Life Sci. 2022;79(9):504.
259. Lim YC, Cha YY. Epigallocatechin-3-gallate induces growth inhibition and apoptosis of human anaplastic thyroid carcinoma cells through suppression of EGFR/ERK pathway and cyclin B1/CDK1 complex. J Surg Oncol. 2011;104(7):776-780.
260.Kim SH,Kang JG,Kim CS,et al.17-allylamino-17-demethoxygeldanamycin and herbimycin A induce cell death by modulating \upbeta -catenin and PI3K/AKT signaling in FRO anaplastic thyroid carcinoma cells. Anticancer Res. 2015; 35(10):5453-5460.
261. Wang C, Zhang R, Tan J, et al. Effect of mesoporous silica nanoparticles co-loading with 17-AAG and Torin2 on anaplastic thyroid carcinoma by targeting VEGFR2. Oncol Rep. 2020;43(5):1491-1502.
262. De Martino D, Yilmaz E, Orlacchio A, Ranieri M,Zhao K, Di Cristofano A.PI3K blockage synergizes with PLK1 inhibition preventingendoreduplicationandenhancingapoptosisin anaplastic thyroid cancer. Cancer Lett. 2018;439:56-65.
263. Nozhat Z, Mohammadi-Yeganeh S, Azizi F, Zarkesh M, Hedayati M. Effects of metformin on the PI3K/AKT/FOXO1 pathway in anaplastic thyroid Cancer cell lines. Daru. 2018; 26(2):93-103.
264. Ozdemir Kutbay N, Biray Avci C, Sarer Yurekli B,et al. Effects ofmetforminandpioglitazone combination onapoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells.JBiochemMol Toxicol.2020;34(10):e22547.
265. Che HY, Guo HY, Si XW, You QY, Lou WY. Additive effect by combination of Akt inhibitor, MK-2206,and PDGFR inhibitor, tyrphostin AG 1296,in suppressing anaplastic thyroid carcinoma cell viability and motility. OncoTargets Ther. 2014;7: 425-432.
266. Park CH, Han SE, Nam-Goong IS, Kim YI, Kim ES. Combined effects of baicalein and docetaxel on apoptosis in 8505c anaplasticthyroidcancercellsviadownregulationoftheERK and Akt/mTOR pathways. Endocrinol Metab. 2018;33(1): 121-132.
267. Lv C, Gao Y, Yao J, et al. High iodine induces the proliferation ofpapillaryandanaplasticthyroidcancercellsviaAKT/- Wee1/CDK1 axis.Front Oncol. 2021;11:622085.
268. Zhang L, Xu S, Cheng X, et al. Diallyl trisulphide, a Hz S donor, compromisesthestemcellphenotypeandrestoresthyroidspecificgeneexpressioninanaplasticthyroidcarcinomacells by targeting AKT-SOX2 axis. Phytother Res. 2021;35(6): 3428-3443.
269. Shi XZ, Zhao S, Wang Y, et al. Antitumor activity of berberine by activating autophagyand apoptosis inCAL-62 and BHT-101 anaplastic thyroid carcinoma cell lines. Drug Des Dev Ther. 2023;17:1889-1906.
270. Wu LH, Pangilinan CR, Lee CH. Downregulation of AKT/mTOR signalingpathway for Salmonella-mediatedautophagyin human anaplastic thyroid cancer. J Cancer. 2022;13(11): 3268-3279.
271. Chai L, Qiu Z, Zhang X, Li R, Wang K. A novel self-assemble peptide drug design of AKT1 for anaplastic thyroid cancer therapy. Biochem Biophys Res Commun. 2022;611:19-22.
272. Jonker PKC, van Dam GM, Oosting SF,Kruijff S, Fehrmann RSN. Identification of novel therapeutic targets in anaplasticthyroid carcinoma usingfunctionalgenomicmRNAprofiling: paving the way for new avenues? Surgery. 2017; 161(1):202-211.
273. Papewalis C, Wuttke M, Schinner S, et al. Role of the novel mTOR inhibitor RADO01 (everolimus) in anaplastic thyroid cancer.Horm Metab Res. 2009;41(10):752-756.
274. Hanna GJ, Busaidy NL, Chau NG, et al. Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer:a phaseIl study.ClinCancerRes.2018;24(7): 1546-1553.
275. Harris EJ, Hanna GJ, Chau N, et al. Everolimus in anaplastic thyroid cancer: a case series. Front Oncol. 2019;9:106.
276. Allegri L, Baldan F, Mio C, et al. Effects of BP-14, a novel cyclin-dependent kinase inhibitor, on anaplastic thyroid cancer cells. Oncol Rep. 2016;35(4):2413-2418.
277. Wagle N, Grabiner BC, Van Allen EM, et al. Response and acquiredresistancetoeverolimusinanaplasticthyroidcancer.N Engl J Med.2014;371(15):1426-1433.
278. Jin N, Jiang T, Rosen DM, Nelkin BD, BallDW. Dual inhibition ofmitogen-activatedproteinkinasekinaseandmammalian targetofrapamycinindifferentiatedandanaplasticthyroid cancer. J Clin Endocrinol Metab.2009;94(10):4107-4112.
279. Milosevic Z, Bankovic J, Dinic J, et al. Potential of the dual mTOR kinase inhibitor AZD2014 to overcome paclitaxel resistancein anaplastic thyroid carcinoma.Cell Oncol.2018; 41(4):409-426.
280. He L, Guo S, Zhu T, Chen C, Xu K. Down-regulation of the mammalian target of rapamycin (mTOR) pathway mediates the effects of the paeonol-platinum(ll) complex in human thyroid carcinoma cells and mouse SW1736 tumor xenografts. MedSciMonInt Med.IExnClinRes.2020:26:e922561.
281.LiY, Sun Q, Chen S, YuX, Jing H.Monensin inhibits anaplastic thyroidcancerviadisruptingmitochondrialrespiration and AMPK/mTOR signaling.Anti Cancer Agents Med Chem.2022; 22(14):2539-2547.
282. Godbert Y, Henriques de Figueiredo B, Bonichon F, et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin 0ncol.2015;33(20):e84-e87.
283. Leroy L, Bonhomme B, Le Moulec S, Soubeyran I, Italiano A, Godbert Y. Remarkable response to ceritinib and brigatinib in ananaplasticlymphomakinase-rearranged anaplasticthyroid carcinomapreviously treatedwith crizotinib.Thyroid.2020; 30(2):343-344.
284. Cao X, Dang L, Zheng X, et al. Targeting super-enhancerdrivenoncogenictranscriptionby CDK7 inhibitionin anaplastic thyroid carcinoma.Thyroid.2019;29(6):809-823.
285. Doolittle WKL,Zhao L, Cheng SY. Blocking CDK7-mediated NOTCH1-cMYC signaling attenuates cancer stem cell activity in anaplastic thyroid cancer. Thyroid. 2022;32(8):937-948.
286. Geng M, Yang Y, Cao X, Dang L, Zhang T, Zhang L. Targeting CDK12-mediated transcription regulation in anaplastic thyroid carcinoma. Biochem Biophys Res Commun. 2019;520(3): 544-550.
287.LeeHJ,LeeWK,Kang CW,Ku CR,ChoYH,LeeEJ.Aselective cyclin-dependent kinase 4, 6 dual inhibitor, ribociclib (LEEO11) inhibits cell proliferation and induces apoptosis in aggressive thyroid cancer.CancerLett.2018;417:131-140.
288.AbutorabiES, Poursheikhani A,Kashani B,et al.The effects of abemaciclib on cell cycle and apoptosis regulation in anaplastic thyroid cancer cells. Mol Biol Rep. 2023;50(5): 4073-4082.
289. Lopes-Ventura S, Pojo M, Matias AT, et al. The efficacy of HRAS and CDK4/6 inhibitors in anaplastic thyroid cancer cell lines. J Endocrinol Invest.2019;42(5):527-540.
290. Lin SF, Lin JD, Hsueh C, Chou TC, Wong RJ. A cyclin-dependent kinase inhibitor,dinaciclibinpreclinical treatment models of thyroid cancer. PLos One. 2017;12(2):e0172315.
291. Pinto N, Prokopec SD, Ghasemi F, et al. Flavopiridol causes cell cycle inhibition and demonstrates anti-cancer activity in anaplastic thyroid cancer models. PLos One. 2020;15(9): e0239315.
292. Catalano MG, Fortunati N, Pugliese M, et al. Histone deacetylase inhibition modulates E-cadherin expression and suppresses migration and invasion of anaplastic thyroid cancer cells.J Clin Endocrinol Metab.2012;97(7):E1150-E1159.
293.Furuya F,Shimura H,Suzuki H,et al.Histone deacetylase inhibitorsrestoreradioiodideuptake andretentioninpoorly differentiated and anaplastic thyroid cancer cellsby expression of the sodium/iodide symporter thyroperoxidase and thyroglobulin.Endocrinology. 2004;145(6):2865-2875.
294.LinSF,LinD,ChouTC,Huang Y,Wong RJilityof his tone deacetylase inhibitor (PXD101) for thyroid cancer treatment. PLoS One. 2013;8(10):e77684.
295. Kim SH, Kang JG, Kim CS, et al. Novel heat shock protein 90 inhibitor NVP-AUY922 synergizes with thehistone deacetylase inhibitor PXD101 in induction of death of anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab. 2015;100(2): E253-E261.
296. Kim SH, Kang JG, Kim CS, et al. The heat shock protein 90 inhibitor SNX5422 has a synergistic activity with histone deacetylaseinhibitorsininductionofdeathofanaplastic thyroid carcinoma cells.Endocrine.2016;51(2):274-282.
297.GreenbergVL,Williams JM,CogswellJP,MendenhallM, Zimmer SG. Histone deacetylase inhibitors promote apoptosis anddifferentialcellcyclearrestinanaplasticthyroidcancer cells. Thyroid. 2001;11(4):315-325.
298. Pugliese M,Fortunati N, Germano A, et al. Histone deacetylase inhibition affects sodium iodide symporter expression and induces ^{131}| cytotoxicity in anaplastic thyroid cancer cells.Thyroid.2013;23(7):838-846.
299. Catalano MG, Pugliese M, Gargantini E, et al. Cytotoxic activityofthehistonedeacetylaseinhibitorpanobinostat (LBH589)in anaplasticthyroid cancerinvitroand invivo.Int J Cancer. 2012;130(3):694-704.
300. Wachter S, Wunderlich A,Roth S, et al. Individualised multimodal treatment strategies for anaplastic and poorly differentiated thyroid cancer.J ClinMed.2018;7(5):115.
301. Catalano MG, Fortunati N, Pugliese M, et al. Valproic acid, a histone deacetylase inhibitor, enhances sensitivity to doxorubicinin anaplastic thyroid cancer cells.JEndocrinol.2006; 191(2):465-472.
302. Catalano MG, Poli R, Pugliese M, Fortunati N, Boccuzzi G. Valproic acid enhances tubulin acetylation and apoptotic activity of paclitaxel on anaplastic thyroid cancer cell lines. Endocr Relat Cancer. 2007;14(3):839-845.
303. Catalano MG, Pugliese M, Poli R, et al. Effects of the histone deacetylaseinhibitorvalproicacidonthesensitivityof anaplasticthyroidcancer celllinestoimatinib.Oncol Rep. 2009;21(2):515-521.
304. Kim TH, Yoo YH, Kang DY, et al. Efficacy on anaplastic thyroid carcinomaofvalproicacidaloneorincombinationwith doxorubicin,a syntheticchenodeoxycholicacidderivative,or lactacystin.Int J Oncol.2009;34(5):1353-1362.
305.Cha,angtalarocaid snsitize resistant anaplastic thyroid carcinoma cells to apoptotic cell death.Ann Surg Oncol. 2013;20(Suppl 3):S716-S724.
306. Hegedus L, Rittler D, Garay T, et al. HDAC inhibition induces PD-L1 expression in a novel anaplastic thyroid cancer cell line.Pathol Oncol Res. 2020;26(4):2523-2535.
307. Perona M, Ibanez IL,Thomasz L, et al. Valproic acid radiosensitizes anaplastic thyroid cells through a decrease of the DNA damage repair capacity. J Endocrinol Invest. 2023; 46(11):2353-2365.
308. Noguchi H, Yamashita H, Murakami T, et al. Successful treatmentofanaplasticthyroidcarcinomawithacombinationof oralvalproic acid,chemotherapy,radiation and surgery. Endocr J. 2009;56(2):245-249.
309. Catalano MG, Pugliese M, Gallo M, et al. Valproic acid, a histone deacetylase inhibitor, in combination with paclitaxel for anaplasticthyroidcancer:results ofa multicenterrandomized controlled phase ll/ll trial. Internet J Endocrinol. 2016;2016:2930414.
310. Maggisano V, Celano M, Lombardo GE,et al. Silencing of hTERT blocks growth and migration of anaplastic thyroid cancer cells. Mol Cell Endocrinol. 2017;448:34-40.
311. Lombardo GE, Maggisano V, Celano M,et al. Anti- hTERT siRNA-loadednanoparticlesblock thegrowthofanaplastic thyroid cancer xenograft.Mol Cancer Therapeut.2018;17(6): 1187-1195.
312.Turkmen E, Sogutlu F, Erdogan M,Biray Avci C.Evaluation of the anticancer effect of telomerase inhibitor BIBR1532 in anaplastic thyroid cancer in terms of apoptosis, migration and cell cycle. Med Oncol. 2023;40(7):196.
313. Kim SH, Kang JG,Kim CS, et al. Herbimycin A inhibits cell growthwithreversalofepithelial-mesenchymaltransitionin anaplastic thyroid carcinoma cells.Biochem Biophys Res Commun. 2014;455(3-4):363-370.
314. Nagayama Y, Yokoi H, Takeda K, et al. Adenovirus-mediated tumor suppressor p53 gene therapy_for anaplastic thyroid carcinoma in vitro and in vivo.J Clin Endocrinol Metab.2000; 85(11):4081-4086.
315. Kim SH, Kang JG, Kim CS,et al.Apigenin induces c-MycmediatedapoptosisinFRO anaplasticthyroid carcinoma cells. Mol Cell Endocrinol. 2013;369(1-2):130-139.
316. Li J, Zheng X, Gao M, et al. Suberoyl bis-hydroxamic acid activatesNotch1signalingandinduces apoptosisinanaplastic thyroid carcinoma through p53. Oncol Rep. 2017;37(1): 458-464.
317. Wu JT, Lin CL, Huang CJ, Cheng YC, Chien CC, Sung YC. Potential synergistic effects of sorafenib and CP-31398 for treatinganaplasticthyroidcancerwithp53mutations.Oncol Lett. 2020;19(4):3021-3026.
318. Lee YJ, Chung JK, Kang JH, Jeong JM, Lee DS, Lee MC. Wildtype p53 enhances the cytotoxic effect of radionuclide gene therapyusingsodiumiodidesymporterinamurineanaplastic thyroid cancer model. Eur J Nucl Med Mol Imag. 2010;37(2): 235-241.
319. Feng C, Tao Y, Yu C, Wang L, Liu X, Cao Y. Integrative singlecell transcriptome analysis reveals immune suppressive landscapeintheanaplasticthyroidcancer.CancerGeneTher. 2023;30(12):1598-1609.
320. Cameselle-Garcia S, Abdulkader-Sande S, Sanchez-Ares M, et al.PD-L1expression and immune cells in anaplastic carcinoma and poorly differentiated carcinoma of the human thyroid gland: a retrospective study. Oncol Lett. 2021;22(1): 553.
321. Li XJ, Gangadaran P, Kalimuthu S, et al. Role of pulmonary macrophages in initiation of lung metastasis in anaplastic thyroid cancer. Int J Cancer. 2016;139(11):2583-2592.
322. Schurch CM, Roelli MA, Forster S, et al. Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy. Thyroid. 2019;29(7):979-992.
323. Caillou B, Talbot M, Weyemi U, et al. Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLos One. 2011;6(7):e22567.
324. Luo Y, Yang YC, Ma B, Xu WB, Liao T, Wang Y. Integrated analysisofnovelmacrophagerelatedsignatureinanaplastic thyroid cancer. Endocrine. 2022;78(3):517-530.
325. Kim DI, Kim E, Kim YA, Cho SW, Lim JA, Park YJ. Macrophage densities correlated with CxC chemokine receptor 4 expressionandrelatedwithpoorsurvivalinanaplasticthyroid cancer.Endocrinol Metab.2016;31(3):469-475.
326. Luo H, Xia X, Kim GD, et al. Characterizing dedifferentiation of thyroid cancer by integrated analysis. Sci Adv. 2021;7(31): eabf3657.
327. Xu T, Zhu C, Song F, et al. Immunological characteristics of immunogenic cell death genes and malignant progression driving roles of TLR4 in anaplastic thyroid carcinoma. BMC Cancer. 2023;23(1):1131.
328. Palacios LM, Peyret V, Viano ME, et al. TIM3 expression in anaplastic-thyroid-cancer-infiltrating macrophages: an emerging immunotherapeutic target. Biology. 2022;11(11): 1609.
329. Stempin CC, Geysels RC, Park S,et al. Secreted factors by anaplasticthyroidcancercellsinducetumor-promotingM2- like macrophage polarization through a TIM3-dependent mechanism.Cancers.2021;13(19):4821.
330.HanY,LiuD,LiL.PD-1/PD-L1 pathway:current researche in cancer.AmJCancerRes.2020;10(3):727-742.
331.Cantara S, Bertelli E, Occhini R, et al. Blockade of the programmed death ligand 1 (PD-L1) as potential therapy for anaplastic thyroid cancer. Endocrine. 2019;64(1):122-129.
332.AdamP,KircherS,SbieraI,et al.FGF-receptors and PD-L1in anaplastic and poorly differentiated thyroid cancer: evaluation of the preclinical rationale.Front Endocrinol.2021;12: 712107.
333. Luo Y, Yang YC, Shen CK, et al. Immune checkpoint protein expression defines the prognosis of advanced thyroid carcinoma.FrontEndocrinol.2022;13:859013.
334. Ahn J, Jin M, Song E, et al. Immune profiling of advanced thyroidcancersusingfluorescentmultipleximmunohistochemistry. Thyroid. 2021;31(1):61-67.
335. Chintakuntlawar AV, Rumilla KM, Smith CY, et al. Expression ofPD-1andPD-L1inanaplastic thyroidcancerpatients treated with multimodal therapy: results from a retrospective study. J Clin Endocrinol Metab. 2017;102(6):1943-1950.
336.Wachter,Roth,GerckeN,t al.Anti-proliferative effectf radiotherapy and implication of immunotherapy in anaplastic thyroid cancer cells. Life. 2023;13(6):1397.
337. Ng TSC, Gunda V, Li R, et al. Detecting immune response to therapies targetingPDL1 and BRAF by using ferumoxytol MRI and macrin in anaplastic thyroid cancer. Radiology. 2021; 298(1):123-132.
338.Yin M, Di G,Bian M. Dysfunction of natural killer cells mediated by PD-1 and Tim-3 pathway in anaplastic thyroid cancer. Int Immunopharm.2018;64:333-339.
339. Zhu L, Li XJ, Kalimuthu S, et al. Natural killer cell (NK-92MI)- based therapyfor pulmonary metastasis of anaplastic thyroid cancer in a nude mouse model. Front Immunol. 2017;8:816.
340. Wennerberg E, Pfefferle A,Ekblad L, et al. Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells. Clin Cancer Res. 2014;20(22):5733-5744.
341. Ahn J, Song E, Oh HS, et al. Low lymphocyte-to-monocyte ratios are associated with poor overall survival in anaplastic thyroid carcinoma patients.Thyroid.2019;29(6):824-829.
342. Park J, Park J, Shin JH, et al. Prognostic value of the neutrophil-to-lymphocyte ratio before and after radiotherapy for anaplastic thyroid carcinoma. Cancers. 2021;13(8):1913.
343.Zhang L, Luo H, Wang L,et al. Diagnostic and prognostic value of preoperative systemic inflammatory markers in anaplastic thyroid cancer. J Surg Oncol. 2020;122(5):897-905.
344.Yamazaki H,Sugino K,Matsuzu K,et al.Inflammatory biomarkers and dynamics of neutrophil-to-lymphocyte ratio in anaplastic thyroid carcinoma. Endocrine. 2020;70(1):115-122.
345.Sriramareddy SN,Jamakhani M,Vilanova L,Brossel H, Staumont B, Hamaidia M. Selective inhibition of DNA ligase IV provides additional eficacy to the treatment of anaplastic thyroid cancer.Front Oncol.2024;14:1323313.
346. Hwang Y, Yun HJ, Jeong JW, et al. Co-inhibition of glutaminolysis and one-carbon metabolism promotes ROS accumulation( leading to enhancement of chemotherapeutic efficacy in anaplastic thyroid cancer. Cell Death Dis. 2023; 14(8):515.
347. Xu T, Zhu C, Chen J, et al. ISG15 and ISGylation modulates cancer stem cell-like characteristics in promoting tumor growth of anaplastic thyroid carcinoma. J Exp Clin Cancer Res.2023;42(1):182.
348. Bao L, Li Y, Hu X, et al. Targeting SIGLEC15 as an emerging immunotherapy for anaplastic thyroid cancer. Int Immunopharm.2024;133:112102.
349.Pan Z, Bao L, Lu X, et al. IL2RA+VSIG4+ tumor-associated macrophage is a key subpopulation of the immunosuppressive microenvironment in anaplastic thyroid cancer.Biochim Biophys Acta,Mol Basis Dis. 2023;1869(1):166591.
350.Han PZ, Ye WD, Yu PC, et al. A distinct tumor microenvironment makes anaplastic thyroid cancer more lethal but immunotherapy sensitive than papillary thyroid cancer.JCI Insight. 2024;9(8):e173712.
351. Haddad Rl, Bischoff L, Ball D, et al. Thyroid carcinoma, version.2nicalpraticeuielnenncl J Natl Compr Cancer Netw. 2022;20(8):925-951.
352. VanderLaan PA.Fine-needle aspiration and core needle biopsy: an update on 2 common minimally invasive tissue sampling modalities. Cancer Cytopathol. 2016;124(12): 862-870.
353. Podany P, Abi-Raad R, Barbieri A, et al. Anaplastic thyroid carcinoma: cytomorphologic features on fine-needle aspiration and associated diagnostic challenges. Am J Clin Pathol. 2022·157(4)-608-619
354. Eilers SG,LaPolice P, MukunyadziP, et al. Thyroid fine-needle aspiration cytology: performance data of neoplastic and malignantcasesasidentifiedfrom1558responsesintheASCP Non-GYN Assessment program thyroid fine-needle performance data. Cancer Cytopathol. 2014;122(10):745-750.
355.SuhH,MoonH,wakJ,ChoiJS,KimEK.naplasticthrod cancer: ultrasonographic findings and the role of ultrasonography-guided fine needle aspiration biopsy. Yonsei Med J. 2013;54(6):1400-1406.
356.Ha EJ, Baek JH, Lee JH, et al. Core needle biopsy could reducediagnosticsurgeryinpatientswithanaplasticthyroid cancer or thyroid lymphoma. Eur Radiol. 2016;26(4): 1031-1036.
357. Vander Poorten V, Goedseels N, Triantafyllou A,et al. Effectiveness of core needle biopsy in the diagnosis of thyroid lymphomaandanaplasticthyroidcarcinoma:asystematic review and meta-analysis.Front Endocrinol. 2022;13:971249.
358. Yun JY, Kim YA, Choe JY, et al. Expression of cancer stem cell markers is more frequent in anaplastic thyroid carcinoma compared to papillary thyroid carcinoma and is related to adverse clinical outcome. J Clin Pathol. 2014;67(2):125-133.
359.Wiseman SM,Griffith OL,Gown A, Walker B, Jones SJM. Immunophenotyping of thyroid tumors identifies molecular markers altered during transformation of differentiated into anaplastic carcinoma.Am J Surg.2011;201(5):580-586.
360.Bellevicine C,laccarinoA,MalapelleU,SassoFC,Biondi B, Troncone G. PAX8 is expressed in anaplastic thyroid carcinoma diagnosed by fine-needle aspiration: a study of three cases with histological correlates. Eur J Endocrinol. 2013; 169(3):307-311.
361.TonerM, Banville N, Timon Cl. Laryngotracheal presentation of anaplastic thyroid carcinoma with squamous differentiation:sevencases demonstratinganunder-recognizeddiagnostic pitfall. Histopathology. 2014;65(4):501-507.
362. Lai WA, Hang JF, Liu CY, et al. PAX8 expression in anaplastic thyroid carcinoma is less than those reported in early studies:a multi-institutionalstudyof 182cases using the monoclonal antibody MRQ-50. Virchows Arch. 2020;476(3): 431-437.
363. Becker N, Chernock RD, Nussenbaum B, Jr Lewis JS. Prognostic significance of β-human chorionic gonadotropin and PAX8 expression in anaplastic thyroid carcinoma. Thyroid. 2014;24(2):319-326.
364. Bishop JA, Sharma R, Westra WH. PAX8 immunostaining of anaplastic thyroid carcinoma: a reliable means of discerning thyroid origin for undifferentiated tumors of the head and neck. Hum Pathol. 2011;42(12):1873-1877.
365.Kanematsu R, Hirokawa M, Tanaka A, et al. Evaluation of Ecadherin and \upbeta catenin immunoreactivity for determining undifferentiated cells in anaplastic thyroid carcinoma. Pathobiology. 2021;88(5):351-358.
366.Weissferdt A,Moran CA.Anaplastic thymic carcinoma:a clinicopathologic and immunohistochemical study of 6 cases. Hum Pathol. 2012;43(6):874-877.
367. Wachter S, Di Fazio P, Maurer E, et al. Prostate-specific membrane antigen in anaplastic and poorly differentiated thyroid cancer· a new diagnostic and therapeutic target? Cancers.2021;13(22):5688.
368. Lawhn-Heath C, Yom SS, Liu C, et al. Gallium-68 prostatespecific membrane antigen ([6Ga]Ga-PSMA-11)PET for imaging of thyroid cancer:a feasibility study. EJNMMI Res.2020; 10(1):128.
369. Damle NA, Bal C, Singh TP, et al. Anaplastic thyroid carcinoma on 68Ga-PSMA PET/CT:opening new frontiers.Eur J Nucl Med Mol Imag. 2018;45(4):667-668.
370. Bogsrud TV, Karantanis D, Nathan MA,et al. 18F-FDG PET in the management of patients with anaplastic thyroid carcinoma. Thvroid. 2008:18(7):713-719.
371.Kim HJ, Chang HS, Ryu YH. Prognostic role of pre-treatment [18F]FDG PET/CT in patients with anaplastic thyroid cancer. Cancers. 2021;13(16):4228.
372. Levy A, Leboulleux S, Lepoutre-Lussey C, et al. (18)F-fluorodeoxyglucose positron emission tomography to assess response after radiation therapy in anaplastic thyroid cancer. Oral Oncol. 2015;51(4):370-375.
373. Poisson T, Deandreis D, Leboulleux S, et al. 18F-fluorodeoxyglucose positron emission tomography and computed tomography in anaplastic thyroid cancer. Eur J Nucl Med Mol Imag.2010;37(12):2277-2285.
374. Aoyama M, Takizawa H, Otani T, et al. Non-invasive monitoringofpaclitaxelandlenvatinibefficacyagainst anaplastic thyroid cancer in orthotopic SCID mouse models using smallanimal FDG-PET/CT. Oncol Rep. 2020;44(4):1709-1716.
375.Chen J, Tward JD,Shrieve DC, Hitchcock YJ. Surgery and radiotherapyimprovessurvivalinpatientswithanaplastic thyroidcarcinoma:analysisof the surveillance,epidemiology, and end results 1983-2002. Am J Clin Oncol. 2008;31(5): 460-464.
376. Akaishi J, Sugino K, Kitagawa W, et al. Prognostic factors and treatment outcomes of 100 cases of anaplastic thyroid carcinoma. Thyroid. 2011;21(11):1183-1189.
377. Sun C, Li Q, Hu Z, et al. Treatment and prognosis of anaplastic thyroid carcinoma: experience from a single institution in China. PLoS One. 2013;8(11):e80011.
378.Mohebati A, Dilorenzo M, Palmer F, et al. Anaplastic thyroid carcinoma: a 25-year single-institution experience. Ann Surg Oncol.2014;21(5):1665-1670.
379. Wendler J, Kroiss M, Gast K, et al. Clinical presentation, treatmentandoutcome of anaplasticthyroidcarcinoma:results of a multicenter study in Germany. Eur J Endocrinol. 2016;175(6):521-529.
380.GlaserSMMandishFGilBalasuramaniGK,lmA Beriwal S.Anaplastic thyroid cancer:prognostic factors, patterns of care, and overall survival. Head Neck. 2016; 38(Suppl 1):E2083-E2090.
381. Hvilsom GB, Londero SC, Hahn CH, et al. Anaplastic thyroid carcinoma in Denmark 1996-2012: a national prospective study of 219 patients. Cancer Epidemiol. 2018;53:65-71.
382. Simoes-Pereira J, Capitao R, Limbert E, Leite V. Anaplastic thyroidcancer:clinicalpictureofthelasttwodecades ata single oncology referral centre and novel therapeutic options. Cancers. 2019;11(8):1188.
383.deRidderM,ieveen vanDijkumE,Engelsman A,KapiteijnE, Klumpen HJ, Rasch CRN. Anaplastic thyroid carcinoma: a nationwide cohort study on incidence, treatment and survival in The Netherlands over 3 decades.Eur J Endocrinol. 2020; 183(2):203-209.
384. Jannin A, Giudici F, de la Fouchardiere C, et al. Factors associated with survival in anaplastic thyroid carcinoma: a multicenter study from the ENDOCAN-TUTHYREF network. Thyroid. 2023;33(10):1190-1200. https: //doi.org/10.1089/thy.2023.0164.correx. published correction appears in Thyroid. 2024;34(1):140.
385.Wu SS,Lamarre ED,Yalamanchali A,et al.Association of treatment strategies and tumor characteristics with overall survival among patients with anaplastic thyroid cancer:a single-institution 21-yearexperience.JAMA Otolaryngol Head Neck Surg. 2023;149(4):300-309.
386. Liu TR, Xiao ZW, Xu HN, et al. Treatment and prognosis of anaplastic thyroid carcinoma: a clinical study of 50 cases. PLoS 0ne.2016;11(10):e0164840.
387.ZhouW,Yue Y,Zhang X.Radiotherapy plus chemotherap leads to prolonged survival in patients with anaplastic thyroid cancer compared with radiotherapy alone regardless of surgical resection and distant metastasis: a retrospective population study.Front Endocrinol.2021;12:748023.
388. Yamazaki H, Sugino K, Katoh R, et al. Response to neoadjuvant paclitaxel predicts survival in anaplastic thyroid carcinoma.Cancer Med.2023;12(3):3027-3035.
389. Zivaljevic V, Tausanovic K, Paunovic I, et al. Age as a prognostic factor in anaplastic thyroid cancer. Internet J Endocrinol.2014;2014:240513.
390.Kong N, Xu Q, Zhang Z, Cui A, Tan S, Bai N.Age influences the prognosis of anaplastic thyroid cancer patients.Front Endocrinol. 2021;12:704596.
391. Wang M, Wei T, Gong R, Zhu J, Li Z. Risk stratification in patients with anaplastic thyroid carcinoma: role of age. Endocrine. 2022;77(2):305-318.
392.Tashima L, Mitzner R, Durvesh S, Goldenberg D. Dyspnea as a prognosticfactorinanaplasticthyroidcarcinoma.EurArch Oto-Rhino-Laryngol. 2012;269(4):1251-1255.
393.Brierley JD, Gospodarowicz MK, Wittekind C.TNM Classification of Malignant Tumours. John Wiley & Sons; 2017.
394. Zhang H, Zhao YC, Wu Q, Wang L, Sun S. The prognostic value of lymphnodemetastasisandtheeightheditionofAJCCfor patients with anaplastic thyroid cancer. Clin Endocrinol. 2021;95(3):498-507.
395. Lee JS, Lee JS, Yun HJ, et al. Prognosis of anaplastic thyroid cancer with distant metastasis.Cancers.2022;14(23):5784.
396. Olinyk D, Augustin T, Rauch J, et al. Role of surgery to the primarytumorinmetastatic anaplasticthyroidcarcinoma: pooled analysis and SEER-based study. J Cancer Res Clin Oncol. 2023;149(7):3527-3547.
397. Sugitani I, Hasegawa Y, Sugasawa M, et al. Super-radical surgery for anaplastic thyroid carcinoma: a large cohort study using the Anaplastic Thyroid Carcinoma Research Consortium of Japan database. Head Neck. 2014;36(3):328-333.
398. Goffredo P, Thomas SM, Adam MA, Sosa JA, Roman SA. Impactoftimelinessofresectionandthyroidectomymargin status on survival for patients with anaplastic thyroid cancer:an analysis of 335 cases.Ann Surg Oncol.2015;22(13): 4166-4174.
399. Xia Q, Wang W, Xu J, Chen X, Zhong Z, Sun C. Evidence from an updated meta-analysis of theprognosticimpacts ofpostoperative radiotherapy and chemotherapy in patients with anaplastic thyroid carcinoma. OncoTargets Ther. 2018;11: 2251-2257.
400. Kwon J, Kim BH, Jung HW, Besic N, Sugitani I, Wu HG. The prognosticimpactsofpostoperativeradiotherapyinthepatients with resected anaplastic thyroid carcinoma: a systematic review and meta-analysis. Eur J Cancer. 2016;59:34-45.
401. Jacob J, Vordermark D, Lorenz K, Medenwald D. Prognostic factors in radiotherapy of anaplastic thyroid carcinoma: a single center study over 31years.Radiat Oncol.2023;18(1): 71.
402. Deeken-Draisey A, Yang GY, Gao J, Alexiev BA.Anaplastic thyroid carcinoma: an epidemiologic, histologic, immunohistochemical, and molecular single-institution study. Hum Pathol.2018;82:140-148.
403. Jeon MJ, Chun SM, Kim D, et al. Genomic alterations of anaplastic thyroid carcinoma detected by targeted massive parallel sequencing in a BRAF(V60OE) mutation-prevalent area. Thyroid. 2016;26(5):683-690.
404. Ravi N, Yang M, Gretarsson S, et al. Identification of targetable lesions in anaplastic thyroid cancer by genome profiling. Cancers. 2019;11(3):402.
405. Latteyer S, Tiedje V, Konig K, et al. Targeted next-generation sequencing for TP53,RAS, BRAF,ALK and NF1 mutations in anaplastic thyroid cancer. Endocrine. 2016;54(3):733-741.
406.TiedjeV,Ting S,Herold T,et al.NGSbased identification of mutational hotspotsfortargeted therapyin anaplasticthyroid carcinoma.Oncotarget.2017;8(26):42613-42620.
407. Tahara M, Kiyota N, Yamazaki T, et al. Lenvatinib for anaplastic thyroid cancer. Front Oncol. 2017;7:25.
408. Wirth LJ, Brose MS, Sherman EJ, et al. Open-label, singlearm, multicenter, phase ll trial of lenvatinib for the treatmentofpatientswithanaplasticthyroidcancer.JClinOncol. 2021;39(21):2359-2366.
409. Higashiyama T, Sugino K, Hara H, et al. Phase ll study of the efficacyandsafetyoflenvatinibforanaplasticthyroidcancer (HOPE). Eur J Cancer. 2022;173:210-218.
410. Yamazaki H, Yokose T, Hayashi H, et al. Expression of fibroblast growth factor receptor 4 and clinical response to lenvatinib in patients with anaplastic thyroid carcinoma: a pilot study.EurJ ClinPharmacol.2020;76(5):703-709.
411. Iwasaki H, Yamazaki H, Takasaki H, et al. Lenvatinib as a novel treatment for anaplastic thyroid cancer: a retrospective study. Oncol Lett. 2018;16(6):7271-7277.
412. Koyama S, Miyake N, Fujiwara K, et al. Lenvatinib for anaplastic thyroid cancer and lenvatinib-induced thyroid dysfunction. Eur Thyroid J. 2018;7(3):139-144.
413. Kim SY, Kim SM, Kim JW, et al. Survival with lenvatinib for the treatmentofprogressiveanaplasticthyroidcancer:a singlecenter, retrospective analysis.Front Endocrinol. 2020;11:599.
414. Kim M, Ahn J, Song DE, et al. Real-world experience of lenvatinibinpatientswithadvancedanaplasticthyroidcancer. Endocrine. 2021;71(2):427-433.
415.Iwasaki H,Toda S,Takahashi A,MasudoK.Outcome of initial lenvatinib treatment in patients with unresectable anaplastic thyroid cancer. Oncol Lett. 2023;26(3):416.
416. lyer PC, Dadu R, Ferrarotto R, et al. Real-world experience with targeted therapyforthe treatment of anaplasticthyroid carcinoma. Thyroid. 2018;28(1):79-87.
417.TakahashiS,TaharaM,ItoK,etal.Safety and effectivenessof lenvatinib in 594 patients with unresectable thyroid cancer in an all-case post-marketing observational study in Japan. Adv Ther. 2020;37(9):3850-3862.
418. Lorimer C, Cheng L, Chandler R, et al. Dabrafenib and trametinibtherapyforadvancedanaplasticthyroidcancer· real-world outcomes from UK centres. Clin Oncol. 2023;35(1): e60-e66.
419. da Silva TN, Rodrigues R, Saramago A, et al. Target therapy for BRAF mutated anaplastic thyroid cancer: a clinical and molecular study. Eur J Endocrinol. 2023;188(1):lvac011.
420. Bueno F, Smulever A, Califano I, et al. Dabrafenib plus trametinibtreatmentinpatientswithanaplasticthyroidcarcinoma: an Argentinian experience. Endocrine. 2023;80(1): 134-141.
421. Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib and trametinibtreatmentinpatientswithlocallyadvancedor metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36(1):7-13.
422. Subbiah V, Kreitman RJ, Wainberg ZA,et al. Dabrafenib plus trametinib in patients with BRAF V600E-mutant anaplastic thyroid cancer: updated analysis from the phase Il ROAR basket study. Ann Oncol. 2022;33(4):406-415.
423. Savvides P, Nagaiah G, Lavertu P, et al. Phase ll trial of sorafenib in patients with advanced anaplasticcarcinoma of the thyroid.Thyroid. 2013;23(5):600-604.
424. Ito Y, Onoda N, Ito Kl, et al. Sorafenib in Japanese patients with locally advanced or metastatic medullary thyroid carcinoma and anaplastic thyroid carcinoma. Thyroid. 2017;27(9): 1142-1148.
425. Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373(8):726-736.
426.Agarwal R, Wang J, Wilson K, Barrett W, Morris JC.Response to targeted therapy in BRAF mutant anaplastic thyroid cancer. J Natl Compr Cancer Netw. 2016;14(10):1203-1207.
427.Lim AM, Taylor GR,Fellowes A,et al. BRAF inhibition in BRAFV600E-positiveanaplastic thyroidcarcinoma.JNatl Compr Cancer Netw. 2016:14(3):249-254.
428.Wang JR, Zafereo ME, Dadu R,et al. Complete surgical resectionfollowing neoadjuvant dabrafenibplustrametinibin BRAFV600-mutatedanaplaticthyroidcarcinoma.Thyroid 2019;29(8):1036-1043.
429. Cabanillas ME,Ferrarotto R, Garden AS, et al. Neoadjuvant BRAF-and immune-directed therapyfor anaplastic thyroid carcinoma.Thyroid.2018;28(7):945-951.
430.Cabanillas ME,Dadu R, Iyer P, et al.Acquired secondary RAS mutationin BRAFV60E-mutated thyroidcancerpatients treated with BRAFinhibitors.Thyroid.2020;30(9):1288-1296.
431. McCrary HC,Aoki J, Huang Y, et al. Mutation based approaches to the treatment of anaplastic thyroid cancer.Clin Endocrinol.2022;96(5):734-742.
432.Kent J,Erwin P, Haraf D,et al.Laryngotracheal resection after B-rafproto-oncogene inhibitionfor anaplastic thyroid carcinoma.AnnThorac Surg.2023;115(5):e117-e120.
433. Gui L, Zhu Y, Li X, et al. Case report: complete response of an anaplasticthyroidcarcinomapatientwithNRASQ61R/BRAF D594N mutations to the triplet of dabrafenib,trametinib and PD-1 antibody.Front Immunol.2023;14:1178682.
434. Maurer E,Eilsberger F, Wachter S, et al.Mutation-based, short-term"neoadjuvant"treatmentallowsresectabilityin stage IVB and C anaplastic thyroid cancer.Eur Arch OtoRhino-Laryngol.2023;280(3):1509-1518.
435.Song Y, Bai Y, Wang J,Xu G,Wang T,Zhang B.Pathologic completeresponse after neoadjuvant v-Raf murine sarcoma viral oncogene homolog B(BRAF)inhibition combined with immunotherapy therapy for anaplastic thyroid carcinoma:a case report and literature review. Endocr J. 2023;70(2): 223-228.
436.Chintakuntlawar AV,Yin J,Foote RL,et al.A phase 2 study of pembrolizumabcombinedwithchemoradiotherapy asinitial treatment for anaplastic thyroid cancer. Thyroid. 2019; 29(11):1615-1622.
437. Capdevila J, Wirth LJ, Ernst T, et al. PD-1 blockade in anaplastic thyroid carcinoma.J Clin Oncol.2020;38(23): 2620-2627.
438.Lee NY, Riaz N, Wu V, et al. A pilot study of durvalumab (MEDl4736)with tremelimumabin combinationwith imageguided stereotactic body radiotherapy in the treatment of metastatic anaplastic thyroid cancer.Thyroid.2022;32(7): 799-806.
439. lyer PC, Dadu R, Gule-Monroe M, et al. Salvage pembrolizumab added tokinase inhibitor therapyforthetreatment of anaplastic thyroid carcinoma.JImmunother Cancer. 2018;6(1):68.
440.DierksC,Seufert J,AumannK,etal.Combination of lenvatinib andpembrolizumabis an effective treatment optionfor anaplastic and poorly differentiated thyroid carcinoma. Thyroid. 2021;31(7):1076-1085.
441.Hatashima A, Archambeau B,Armbruster H,et al.An evaluationofclinicalefficacyofimmunecheckpointinhibitorsfor patients with anaplastic thyroid carcinoma.Thyroid.20zz; 32(8):926-936.
442. Kolipara R, Schneider B, Radovich M, Babu S, Kiel PJ. Exceptionalresponsewithimmunotherapyinapatient withanaplastic thyroidcancer.Oncol.2017;22(10): 1149-1151.
443.Aghajani MJ, Cooper A,McGuire H,et al.Pembrolizumab for anaplasticthyroidcancer:acasestudy.CancerImmunol Immunother.2019;68(12):1921-1934.
444. Sukari A, Kukreja G,Nagasaka M,et al. The role of immune checkpoint inhibitors in anaplastic thyroid cancer (Case Series).Oral Oncol.2020;109:104744.
445.Zheng L,Li L,He Q,et al.Response toimmunotherapy in a patientwithanaplasticthyroidcancer:acasereport.Medicine. 2021;100(32):e26138.
446. Gui L, Liu S, Zhang Y, Shi Y.A remarkable and durable response to sintilimab and anlotinib in thefirst-line treatment ofananaplasticthyroidcarcinomawithouttargetable genomic alterations:a case report.OncoTargets Ther.2021; 14:2741-2746.
447.Shih SR, Chen KH, Lin KY, et al. Immunotherapy in anaplastic thyroid cancer:case series.J Formos Med Assoc. 2022;121(6): 1167-1173.
448. Kroloff MJ, Holz JB,Stern O, et al. Durable response of anaplastic thyroid carcinoma to FS118,a bispecific LAG-3/PDL1 antibody, after checkpoint inhibitor progression:a case report.JImmunotherCancer.2022;10(10):e005225.
449. Goh D,Lim KH, Sudirman SRB, Ang MK, Chua MLK,Lim CM. Boostedabscopaleffectfromradiotherapyandpembrolizumabinanaplasticthyroidcancer:amini-reviewand case report. Chin Clin Oncol.2023;12(5):57.
450.Xing Y, Wang Y,Wu X. Radiotherapy combined with immunotherapysuccessfullytreatedonecaseofanaplasticthyroid cancer:a case report.FrontOncol.2023;13:1125226.
451. lagaru A,McDougallIR.F-18 FDG PET/CT demonstration of an adrenalmetastasisinapatientwithanaplasticthyroidcancer.Clin Nucl Med.2007;32(1):13-15.
452. Nguyen BD,Ram PC. PET/CT staging and posttherapeutic monitoring of anaplastic thyroid carcinoma.Clin Nucl Med. 2007;32(2):145-149.
453. Strobel K, Steinert HC,Bhure U,Koma AY, Gassmann N, StockliSJ.Tumourthrombus inthesuperiorvena cava from anaplastic carcinoma of the thyroid:FDGPET/CT imaging findings.Eur J Nucl Med Mol Imag. 2007; 34(5):813.
454.ZweifelM,Stenner-LiewenF,WeberA,et al.Increased bone marrow activity onF-18-FDGPET/CT in granulocyte colony stimulatingfactorproducinganaplasticthyroidcarcinoma. Clin Nucl Med.2010;35(2):103-104.
455.Yurkiewicz IR,GanjooKN,lagaru A.Anaplastic thyroid cancer withextensiveskeletalmusclemetastaseson18F-FDG PET/CT. Clin Nucl Med. 2018;43(4):e113-e114.