multicentre, randomised, placebo-controlled, phase 3 trial. Lancet
381, 303–312 (2013).
4. Mayer, R. J. et al. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N. Engl. J. Med 372, 1909–1919 (2015).
5. Cremolini, C. et al. Rechallenge for Patients With RAS and BRAF
Wild-Type Metastatic Colorectal Cancer With Acquired Resistance
to First-line Cetuximab and Irinotecan: A Phase 2 Single-Arm Clinical Trial. JAMA Oncol. 5, 343–350 (2019).
6. Sartore-Bianchi, A. et al. Circulating tumor DNA to guide rechallenge with panitumumab in metastatic colorectal cancer: the phase
2 CHRONOS trial. Nat. Med 28, 1612–1618 (2022).
7. Lenz, H. J. et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for
Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin.
Oncol. 40, 161–170 (2022).
8. Diaz, L. A. Jr et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic
colorectal cancer (KEYNOTE-177): final analysis of a randomised,
open-label, phase 3 study. Lancet Oncol. 23, 659–670 (2022).
9. Kawazoe, A. X. R. et al. Lenvatinib Plus Pembrolizumab Versus
Standard of Care for Previously Treated Metastatic Colorectal
Cancer: Final Analysis of the Randomized, Open-Label, Phase III
LEAP-017 Study. J. Clin. Oncol. 42, 2918–2927 (2024).
10. Eng, C. et al. Atezolizumab with or without cobimetinib versus
regorafenib in previously treated metastatic colorectal cancer
(IMblaze370): a multicentre, open-label, phase 3, randomised,
controlled trial. Lancet Oncol. 20, 849–861 (2019).
11. Pozzi, C. et al. The EGFR-specific antibody cetuximab combined
with chemotherapy triggers immunogenic cell death. Nat. Med. 22,
624–631 (2016).
12. Inoue, Y. et al. Cetuximab strongly enhances immune cell infiltration into liver metastatic sites in colorectal cancer. Cancer Sci. 108,
455–460 (2017).
13. Woolston, A. et al. Genomic and Transcriptomic Determinants of
Therapy Resistance and Immune Landscape Evolution during AntiEGFR Treatment in Colorectal Cancer. Cancer Cell 36, 35–50.e9
(2019).
14. Lee, S. C., Srivastava, R. M., Lopez-Albaitero, A., Ferrone, S. & Ferris,
R. L. Natural killer (NK): dendritic cell (DC) cross talk induced by
therapeutic monoclonal antibody triggers tumor antigen-specific T
cell immunity. Immunol. Res. 50, 248–254 (2011).
15. Taylor, R. J. et al. Ex vivo antibody-dependent cellular cytotoxicity
inducibility predicts efficacy of cetuximab. Cancer Immunol. Res 3,
567–574 (2015).
16. Srivastava, R. M. et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell
immunity in head and neck cancer patients. Clin. Cancer Res. 19,
1858–1872 (2013).
17. Yang, X., Zhang, X., Mortenson, E. D., Radkevich-Brown, O., Wang, Y.
& Fu, Y. X. Cetuximab-mediated tumor regression depends on innate
and adaptive immune responses. Mol. Ther. 21, 91–100 (2013).
18. Sacco, A. G. et al. Pembrolizumab plus cetuximab in patients with
recurrent or metastatic head and neck squamous cell carcinoma:
an open-label, multi-arm, non-randomised, multicentre, phase 2
trial. Lancet Oncol. 22, 883–892 (2021).
19. Martinelli, E. et al. Cetuximab Rechallenge Plus Avelumab in Pretreated Patients With RAS Wild-type Metastatic Colorectal Cancer:
The Phase 2 Single-Arm Clinical CAVE Trial. JAMA Oncol. 7,
1529–1535 (2021).
20. Chung, Y. M. et al. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of
FOXO3. J. Immunother. Cancer. 9, e002772 (2021).
21. Lee, Y. M. et al. SN-38, an active metabolite of irinotecan, enhances
anti-PD-1 treatment efficacy in head and neck squamous cell carcinoma. J. Pathol. 259, 428–440 (2023).
22. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current
and future perspectives of liquid biopsies in genomics-driven
oncology. Nat. Rev. Genet. 20, 71–88 (2019).
23. Kagawa, Y. et al. Combined Analysis of Concordance between
Liquid and Tumor Tissue Biopsies for RAS Mutations in Colorectal
Cancer with a Single Metastasis Site: The METABEAM Study. Clin.
Cancer Res 27, 2515–2522 (2021).
24. Assaf, Z. J. F. et al. A longitudinal circulating tumor DNA-based
model associated with survival in metastatic non-small-cell lung
cancer. Nat. Med. 29, 859–868 (2023).
25. Kim, S. et al. Dynamic changes in longitudinal circulating tumour
DNA profile during metastatic colorectal cancer treatment. Br. J.
Cancer 127, 898–907 (2022).
26. Vidal, J. et al. Liquid Biopsy Detects Early Molecular Response and
Predicts Benefit to First-Line Chemotherapy plus Cetuximab in
Metastatic Colorectal Cancer: PLATFORM-B Study. Clin. Cancer Res
29, 379–388 (2023).
27. Lee, B. et al. Distinct Serum Immune Profiles Define the Spectrum
of Acute and Chronic Pancreatitis From the Multicenter Prospective
Evaluation of Chronic Pancreatitis for Epidemiologic and Translational Studies (PROCEED) Study. Gastroenterology. 165, 173–186
(2023).
28. Tang, Z. et al. Multiplex immune profiling reveals the role of serum
immune proteomics in predicting response to preoperative chemotherapy of gastric cancer. Cell Rep. Med. 4, 100931 (2023).
29. Leibovitzh, H. et al. Immune response and barrier dysfunctionrelated proteomic signatures in preclinical phase of Crohn’s disease highlight earliest events of pathogenesis. Gut. 72, 1462–1471
(2023).
30. Li, J. et al. Effect of Fruquintinib vs Placebo on Overall Survival
in Patients With Previously Treated Metastatic Colorectal Cancer:
The FRESCO Randomized Clinical Trial. JAMA 319, 2486–2496
(2018).
31. Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus
irinotecan in irinotecan-refractory metastatic colorectal cancer. N.
Engl. J. Med. 351, 337–345 (2004).
32. Masuishi, T. et al. Phase 2 study of irinotecan plus cetuximab rechallenge as third-line treatment in KRAS wild-type metastatic colorectal
cancer: JACCRO CC-08. Br. J. Cancer 123, 1490–1495 (2020).
33. Tsuji, A. et al. Phase II Study of Third-Line Panitumumab Rechallenge in Patients with Metastatic Wild-Type KRAS Colorectal Cancer
Who Obtained Clinical Benefit from First-Line Panitumumab-Based
Chemotherapy: JACCRO CC-09. Target Oncol. 16, 753–760 (2021).
34. Fountzilas, C. et al. Phase Ib/II Study of Cetuximab plus Pembrolizumab in Patients with Advanced RAS Wild-Type Colorectal
Cancer. Clin. Cancer Res 27, 6726–6736 (2021).
35. Quan, M. et al. China special issue on gastrointestinal tumorsCetuximab retreatment plus camrelizumab and liposomal
irinotecan in patients with RAS wild-type metastatic colorectal
cancer: Cohort B of the phase II CRACK study. Int J. Cancer 153,
1877–1884 (2023).
36. Fukuoka, S. et al. Regorafenib Plus Nivolumab in Patients With
Advanced Gastric or Colorectal Cancer: An Open-Label, DoseEscalation, and Dose-Expansion Phase Ib Trial (REGONIVO,
EPOC1603). J. Clin. Oncol. 38, 2053–2061 (2020).
37. Andrea, J. et al. Botensilimab plus balstilimab in relapsed/refractory
microsatellite stable metastatic colorectal cancer: a phase 1 trial.
Nat Med. https://doi.org/10.1038/s41591-024-03083-7 (2024).
38. Fakih, M. et al. Regorafenib, Ipilimumab, and Nivolumab for Patients
With Microsatellite Stable Colorectal Cancer and Disease Progression With Prior Chemotherapy: A Phase 1 Nonrandomized Clinical
Trial. JAMA Oncol. 9, 627–634 (2023).
39. Wang, F. et al. Regorafenib plus toripalimab in patients with metastatic colorectal cancer: a phase Ib/II clinical trial and gut microbiome analysis. Cell Rep. Med. 2, 100383 (2021).
Article https://doi.org/10.1038/s41467-024-51536-x
Nature Communications | (2024) 15:7255 12