34. Sharman JP, Egyed M, Jurczak W, et al. Efficacy and safety in
a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus
chlorambucil in treatment-naïve chronic lymphocytic leukemia.
Leukemia. 2022 Jan 1;36(4):1171–1175. doi: 10.1038/s41375-021-
01485-x
35. Sharman JP, Egyed M, Jurczak W, et al. Acalabrutinib ± obinutuzumab Vs obinutuzumab + chlorambucil in treatment-naive chronic
lymphocytic leukemia: 6-year follow-up of elevate-tn. Blood.
2023;142(Supplement 1):636. doi: 10.1182/blood-2023-174750
36. Ghia P, Pluta A, Wach M, et al. ASCEND: phase III, randomized trial
of acalabrutinib versus idelalisib plus rituximab or bendamustine
plus rituximab in relapsed or refractory chronic lymphocytic
leukemia. J Clin Oncol. 2020 Sep 1;38(25):2849–2861. doi: 10.
1200/JCO.19.03355
37. Jurczak W, Pluta A, Wach M, et al. Three-year follow-up of the
ascend trial: acalabrutinib vs rituximab plus idelalisib or bendamustine in relapsed/refractory chronic lymphocytic leukemia. Blood.
2021;138(Supplement 1):393. doi: 10.1182/blood-2021-146570
38. Ghia P, Pluta A, Wach M, et al. Acalabrutinib versus Investigator’s
choice in relapsed/refractory chronic lymphocytic leukemia: final
ASCEND trial results. Hemasphere. 2022 Dec;6(12):e801. doi: 10.
1097/HS9.0000000000000801
39. Guo Y, Liu Y, Hu N, et al. Discovery of zanubrutinib (BGB-3111),
a novel, potent, and selective covalent inhibitor of Bruton’s tyrosine kinase. J Med Chem. 2019 Sep 12;62(17):7923–7940. doi: 10.
1021/acs.jmedchem.9b00687
40. Tam C, Grigg AP, Opat S, et al. The BTK inhibitor, bgb-3111, is safe,
tolerable, and highly active in patients with relapsed/refractory
B-Cell malignancies: initial report of a phase 1 first-in-human trial.
Blood. 2015;126(23):832. doi: 10.1182/blood.V126.23.832.832
41. Tam CS, Opat S, Cull G, et al. Twice daily dosing with the highly
specific BTK inhibitor, bgb-3111, achieves complete and continuous BTK occupancy in lymph nodes, and is associated with durable
responses in patients (pts) with chronic lymphocytic leukemia (Cll)/
small lymphocytic lymphoma (SLL). Blood. 2016;128(22):642.
42. Tam CS, Simpson D, Opat S, et al. Safety and activity of the highly
specific BTK inhibitor BGB-3111 in patients with indolent and
aggressive non Hodgkin’s lymphoma. Blood. 2017;130
(Supplement 1):152.
43. Song Y, Sun M, Qi J, et al. A two-part, single-arm, multicentre,
phase I study of zanubrutinib, a selective Bruton tyrosine kinase
inhibitor, in Chinese patients with relapsed/refractory B-cell
malignancies. Br J Haematol. 2022 Jul;198(1):62–72. doi: 10.1111/
bjh.18162
44. Tam CS, Trotman J, Opat S, et al. Phase 1 study of the selective BTK
inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood. 2019 Sep 12;134(11):851–859. doi:
10.1182/blood.2019001160
45. Byrd JC, Harrington B, O’Brien S, et al. Acalabrutinib (ACP-196) in
relapsed chronic lymphocytic leukemia. N Engl J Med. 2016 Jan
28;374(4):323–332. doi: 10.1056/NEJMoa1509981
46. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase
inhibitor ibrutinib (PCI-32765) has significant activity in patients
with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013
Jan 1;31(1):88–94. doi: 10.1200/JCO.2012.42.7906
47. Ou YC, Tang Z, Novotny W, et al. Rationale for once-daily or
twice-daily dosing of zanubrutinib in patients with mantle cell
lymphoma. Leuk Lymphoma. 2021 Nov;62(11):2612–2624. doi: 10.
1080/10428194.2021.1929961
48. Ou YC, Liu L, Tariq B, et al. Population pharmacokinetic analysis of
the BTK inhibitor zanubrutinib in healthy volunteers and patients
with B-Cell malignancies. Clin Transl Sci. 2021 Mar;14(2):764–772.
doi: 10.1111/cts.12948
49. Ou YC, Preston RA, Marbury TC, et al. A phase 1, open-label,
single-dose study of the pharmacokinetics of zanubrutinib in subjects with varying degrees of hepatic impairment. Leuk Lymphoma.
2020 Jun;61(6):1355–1363. doi: 10.1080/10428194.2020.1719097
50. Tam CS, Ou YC, Trotman J, et al. Clinical pharmacology and PK/PD
translation of the second-generation Bruton’s tyrosine kinase
inhibitor, zanubrutinib. Expert Rev Clin Pharmacol. 2021 Nov;14
(11):1329–1344. doi: 10.1080/17512433.2021.1978288
51. Tam CS, Muñoz JL, Seymour JF, et al. Zanubrutinib: past, present,
and future. Blood Cancer J. 2023 Sep 11;13(1):141. doi: 10.1038/
s41408-023-00902-x
52. Frustaci AM, Deodato M, Zamprogna G, et al. Next generation BTK
inhibitors in CLL: evolving challenges and new opportunities.
Cancers (Basel). 2023 Feb 27;15(5):1504. doi: 10.3390/
cancers15051504
53. Podoll T, Pearson PG, Kaptein A, et al. Identification and characterization of ACP-5862, the Major circulating active metabolite of
acalabrutinib: both are potent and selective covalent Bruton tyrosine kinase inhibitors. J Pharmacol Exp Ther. 2023 Jan;384
(1):173–186. doi: 10.1124/jpet.122.001116
54. Shadman M, Flinn IW, Levy MY, et al. Zanubrutinib in patients with
previously treated B-cell malignancies intolerant of previous Bruton
tyrosine kinase inhibitors in the USA: a phase 2, open-label,
single-arm study. Lancet Haematol. 2023 Jan;10(1):e35–e45. doi:
10.1016/S2352-3026(22)00320-9
• Phase II trial demonstrating the tolerability and stable or
improved efficacy outcomes using zanubrutinib after developing an intolerance to ibrutinib and/or acalabrutinib.
55. Mu S, Tang Z, Novotny W, et al. Effect of rifampin and itraconazole
on the pharmacokinetics of zanubrutinib (a Bruton’s tyrosine
kinase inhibitor) in Asian and non-Asian healthy subjects. Cancer
Chemother Pharmacol. 2020 Feb;85(2):391–399. doi: 10.1007/
s00280-019-04015-w
56. Tariq B, Conto S, Cohen A, et al. A phase 1, open-label,
fixed-sequence, drug-drug interaction study of zanubrutinib with
Rifabutin in healthy volunteers. Clin Pharmacol Drug Dev. 2023
Aug;12(8):832–838. doi: 10.1002/cpdd.1250
57. Tariq B, Ou YC, Stern JC, et al. A phase 1, open-label, randomized
drug-drug interaction study of zanubrutinib with moderate or
strong CYP3A inhibitors in patients with B-cell malignancies. Leuk
Lymphoma. 2023 Feb;64(2):329–338. doi: 10.1080/10428194.2022.
2150820
58. Zhang H, Ou YC, Su D, et al. In vitro investigations into the roles of
CYP450 enzymes and drug transporters in the drug interactions of
zanubrutinib, a covalent Bruton’s tyrosine kinase inhibitor.
Pharmacol Res Perspect. 2021 Dec;9(6):e00870. doi: 10.1002/prp2.
870
59. Wang K, Yao X, Zhang M, et al. Comprehensive PBPK model to
predict drug interaction potential of zanubrutinib as a victim or
perpetrator. CPT Pharmacometrics Syst Pharmacol. 2021 May;10
(5):441–454. doi: 10.1002/psp4.12605
60. Ou YC, Tang Z, Novotny W, et al. Evaluation of drug interaction
potential of zanubrutinib with cocktail probes representative of
CYP3A4, CYP2C9, CYP2C19, P-gp and BCRP. Br J Clin Pharmacol.
2021 Jul;87(7):2926–2936. doi: 10.1111/bcp.14707
61. Cull G, Burger JA, Opat S, et al. Zanubrutinib for treatment-naïve
and relapsed/refractory chronic lymphocytic leukaemia: long-term
follow-up of the phase I/II AU-003 study. Br J Haematol. 2022
Mar;196(5):1209–1218. doi: 10.1111/bjh.17994
62. Seymour JF, Opat S, Cull G, et al. High overall response rate with
the BTK inhibitor BGB-3111 in patients with chronic lymphocytic
leukemia/small lymphocytic lymphoma: an update on safety and
activity. Hematol Oncol. 2017;35(S2):234–235. doi: 10.1002/hon.
2438_97
63. Xu W, Yang S, Zhou K, et al. Treatment of relapsed/refractory
chronic lymphocytic leukemia/small lymphocytic lymphoma with
the BTK inhibitor zanubrutinib: phase 2, single-arm, multicenter
study. J Hematol Oncol. 2020 May 11;13(1):48. doi: 10.1186/
s13045-020-00884-4
64. Xu W, Yang S, Tam CS, et al. Zanubrutinib monotherapy for Naïve
and relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma: a pooled analysis of three studies. Adv Ther.
2022 Sep;39(9):4250–4265. doi: 10.1007/s12325-022-02238-7
65. Tam CS, Brown JR, Kahl BS, et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and
small lymphocytic lymphoma (SEQUOIA): a randomised, controlled,
14 A. HATASHIMA AND M. SHADMAN