Low voltage Motors& Additional for water cooled motor Manual

发布时间:2023-11-01 | 杂志分类:其他
免费制作
更多内容

Low voltage Motors& Additional for water cooled motor Manual

35Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351.1 Declaration of Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351.2 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 Safety consider... [收起]
[展开]
Low voltage Motors& Additional for water cooled motor Manual
粉丝: {{bookData.followerCount}}
文本内容
第1页

More languages - please go to:

https://new.abb.com/motors-generators/iec-low-voltage-motors/manuals

—INSTALLATION, OPERATION, MAINTENANCE AND SAFETY MANUAL

Low voltage motors

Installation, operation,

maintenance and safety manual

第2页

34 3GZF500730-85 REV H EN 05-2022

第3页

35

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.1 Declaration of Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Safety considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Transportation and storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Motor weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Installation and commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Motors with other than deep groove ball bearings . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Insulation resistance check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Balancing and fitting coupling halves and pulleys . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Mounting and alignment of the motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Radial forces and belt drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Motors with drain plugs for condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.9 Cabling and electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.9.1 Connections for different starting methods . . . . . . . . . . . . . . . . . . . . . . . . . . .43

4.9.2 Connections of auxiliaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.10 Terminals and direction of rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Low voltage motors in variable speed operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Winding insulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.1 Selection of winding insulation for ABB converters . . . . . . . . . . . . . . . . . . . . . . 45

6.2.2 Selection of winding insulation with all other converters . . . . . . . . . . . . . . . . . . 45

6.3 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Bearing currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4.1 Elimination of bearing currents with ABB converters . . . . . . . . . . . . . . . . . . . . .46

6.4.2 Elimination of bearing currents with all other converters . . . . . . . . . . . . . . . . . . .46

6.5 Cabling, grounding and EMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.6 Operating speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.7 Motors in variable speed applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.7.2 Motor loadability with AC_8_ _ – Series of converters with DTC control . . . . . . . . . .47

6.7.3 Motor loadability with AC_5_ _ – series of converter . . . . . . . . . . . . . . . . . . . . . .48

6.7.4 Motor loadability with other voltage source PWM-type converters . . . . . . . . . . . . .48

6.7.5 Short time overloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.8 Rating plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.9 Commissioning the variable speed application . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Contents

3GZF500730-85 REV H EN 05-2022

第4页

36 3GZF500730-85 REV H EN 05-2022

7 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 General inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.1 Standby motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Lubrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2.1 Motors with permanently greased bearings . . . . . . . . . . . . . . . . . . . . . . . . . . .50

7.2.2 Motors with regreasable bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

7.2.3 Lubrication intervals and amounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.4 Lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 After Sales Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.1 Spare parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.2 Dismantling, re-assembly and rewinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.3 Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9 Environmental requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

11 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

第5页

37

1 Introduction

3GZF500730-85 REV H EN 05-2022

The conformity of the end product according to

Directive 2006/42/EC (Machinery) has to be

established by the commissioning party

when the motor is fitted to the machinery.

These instructions are valid for the following

ABB electrical machine types, in both motor

and generator operation:

• series MT*, MXMA,

• series M1A*, M2A*/M3A*, M2B*/M3B*, M4B*,

M2C*/M3C*, M2F*/M3F*, M2L*/M3L*, M2M*/

M3M*, M2Q*, M2R*/M3R*, M2V*/M3V*

• in IEC frame sizes 56-500

• in NEMA frame sizes 58*, 50**

There is a separate manual for e.g. Ex motors

‘Low voltage motors for explosive atmospheres:

Installation, operation and maintenance and

safety manual (3GZF500730-47).

Additional information is required for some

machine types due to special application

and/or design considerations.

Additional manual is available for the

following motors:

• roller table motors

• water cooled motors

• smoke extraction motors

• brake motors

• motors for high ambient temperatures

• motors in marine applications for mounting

on open deck

• of ships or offshore units

1.1 Declaration of Conformity

1.2 Validity

These instructions must be followed to ensure safe and proper installation, operation and

maintenance of the motor. They should be brought to the attention of anyone who installs,

operates or maintains the motor or associated equipment. The motor is intended for

installation and use by qualified personnel, familiar with health and safety requirements and

national legislation. Ignoring these instructions may invalidate all applicable warranties.

第6页

38 3GZF500730-85 REV H EN 05-2022

The motor is intended for installation and use

by qualified personnel, familiar with health and

safety requirements and national legislation.

Safety equipment necessary for the prevention of

accidents at the installation and operating site must

be provided in accordance with local regulations.

WARNING

Emergency stop controls must be

equipped with restart lockouts. After

emergency stop a new start command

can take effect only after the restart

lockout has been intentionally reset.

Points to be observed:

1. Do not step on the motor.

2. The temperature of the outer casing of the

motor may be hot to the touch during normal

operation and especially after shut-down.

3. Some special motor applications may require

additional instructions (e.g. when supplied

by frequency converter).

4. Observe rotating parts of the motor.

5. Do not open terminal boxes while energized.

2 Safety considerations

第7页

3GZF500730-85 REV H EN 05-2022 39

3 Handling

Immediately upon receipt, check the motor for

external damage (e.g. shaft-ends, flanges and

painted surfaces) and, if found, inform the forwarding agent without delay.

Check all rating plate data, especially voltage and

winding connections (star or delta). The type of

The motor should always be stored indoors

(above –20 °C), in dry, vibration-free and dust-free

conditions. During transportation, shocks, falls

and humidity should be avoided. In other conditions, please contact ABB.

Unprotected machined surfaces (shaft-ends and

flanges) should be treated against corrosion.

It is recommended that shafts are rotated periodically (once per quarter) by hand to prevent

grease migration.

bearing is specified on the rating plate of all motors except the smallest frame sizes.

In the case of a variable speed drive application

check the maximum loadability allowed according

to frequency stamped on the motor’s second rating plate.

Anti-condensation heaters, if fitted, are recommended to be used to avoid water condensing in

the motor.

The motor must not be subject to any external vibrations at standstill so as to avoid causing damage to the bearings.

Motors fitted with cylindrical-roller and/or angular contact bearings must be fitted with locking

devices during transport.

3.1 Reception

3.2 Transportation and storage

第8页

40 3GZF500730-85 REV H EN 05-2022

All ABB motors above 25 kg are equipped with lifting lugs or eyebolts.

Only the main lifting lugs or eyebolts of the motor

should be used for lifting the motor. They must

not be used to lift the motor when it is attached

to other equipment.

Lifting lugs for auxiliaries (e.g. brakes, separate

cooling fans) or terminal boxes must not be used

for lifting the motor. Because of different output,

mounting arrangements and auxiliary equipment,

motors with the same frame may have a different

center of gravity.

Damaged lifting lugs must not be used. Check

that eyebolts or integrated lifting lugs are undamaged before lifting.

The total motor weight can vary within the same

frame size (center height) depending on different

output, mounting arrangement and auxiliaries.

The following table shows estimated maximum

weights for machines in their basic versions as a

function of frame material.

The actual weight of all ABB’s motors, except the

smallest frame sizes (56 and 63), is shown on the

rating plate.

Table 3.1: Minimum cross-sectional area of protective conductors

Frame size Aluminum, Weight kg Cast iron, Weight kg Add. for brake

56 4.5 – –

63 6 – –

71 8 13 5

80 14 20 8

90 20 30 10

100 32 40 16

112 36 50 20

132 93 90 30

160 149 130 30

180 162 190 45

200 245 275 55

225 300 360 75

250 386 405 75

280 425 800 –

315 – 1 700 –

355 – 2 700 –

400 – 3 500 –

450 – 4 500 –

5000 – 2 800 –

If the motor is equipped with a separate fan, contact ABB for the weight.

Lifting eyebolts must be tightened before lifting.

If needed, the position of the eyebolt can be adjusted using suitable washers as spacers.

Ensure that proper lifting equipment is used and that

the sizes of the hooks are suitable for the lifting lugs.

Care must be taken not to damage auxiliary

equipment and cables connected to the motor.

Remove eventual transport jigs fixing the motor

to the pallet.

Specific lifting instructions are available from ABB.

WARNING

During lifting, mounting or maintenance

work, all necessary safety considerations

shall be in place and special attention to

be taken that nobody will be subject

to lifted load.

3.3 Lifting

3.4 Motor weight

第9页

3GZF500730-85 REV H EN 05-2022 41

4 Installation and commissioning

All rating plate values must be carefully checked

to ensure that the motor protection and connection will be properly done.

When starting the motor for the first time or after

it has been in storage more than 6 months, apply

the specified quantity of grease.

See section “7.2.2 Motors with re-greasable bearings” for more details.

When fitted in a vertical position with the shaft

pointing downwards, the motor must have a protective cover to prevent foreign objects and fluid

from falling into the ventilation openings. This

task can also be achieved by a separate cover not

fixed to the motor. In this case, the motor must

have a warning label.

Remove transport locking if employed. Turn the

shaft of the motor by hand to check free rotation,

if possible.

Motors equipped with cylindrical roller bearings:

Running the motor with no radial force applied to

the shaft may damage the roller bearing due to

“sliding”,

Motors equipped with angular contact ball bearing:

Running the motor with no axial force applied in

the right direction in relation to the shaft may

damage the angular contact bearing.

WARNING

For motors with angular contact bearings

the axial force must not by any means

change direction.

The type of bearing is specified on the rating plate.

4.1 General

4.2 Motors with other than deep groove ball bearings

WARNING

Disconnect and lock out before working

on the motor or the driven equipment.

第10页

42 3GZF500730-85 REV H EN 05-2022

Measure insulation resistance (IR) before commissioning, after long periods of standstill or

storage when winding dampness may be suspected. IR shall be measured directly on the motor terminals with the supply cables disconnected

in order to avoid them affecting the result.

Insulation resistance should be used as a trend indicator to determine changes in the insulation

system. In new machines the IR is usually thousands of Mohms and thus following the change of

IR is important so as to know the condition of the

insulation system. Typically, the IR should not be

below 10 MΩ and in no case below 1 MΩ (measured with 500 or 1000 VDC and corrected to 25

°C). The insulation resistance value is halved for

each 20 °C increase in temperature.

Figure 1, in chapter 11, can be used for the insulation correction to the desired temperature.

The end user has full responsibility for

preparation of the foundation.

Metal foundations should be painted to

avoid corrosion.

Foundations must be even and sufficiently rigid

to withstand possible short circuit forces. They

must be designed and dimensioned to avoid the

transfer of vibration to the motor and vibration

caused by resonance. See figure below.

WARNING

To avoid risk of electrical shock, the motor

frame must be grounded and the windings

should be discharged against the frame

immediately after each measurement.

If the reference resistance value is not attained,

the winding is too damp and must be oven dried.

The oven temperature should be 90 °C for 12-16

hours followed by 105 °C for 6-8 hours.

If fitted drain hole plugs must be removed and

closing valves must be opened during heating. After heating, make sure the plugs are refitted. Even

if the drain plugs are fitted, it is recommended to

disassemble the end shields and terminal box

covers for the drying process.

Windings drenched in seawater normally need to

be rewound.

4.3 Insulation resistance check

4.4 Foundation

Note! Height difference shall

not exceed ± 0,1mm referred

to any other motor foot

Ruler

Foot location

第11页

3GZF500730-85 REV H EN 05-2022 43

As standard, balancing of the motor has been carried out using half key.

Coupling halves or pulleys must be balanced after

machining the keyways. Balancing must be done

in accordance with the balancing method specified for the motor.

Belts must be tightened according to the instructions of the supplier of the driven equipment.

However, do not exceed the maximum belt forces

(i.e. radial bearing loading) stated in the relevant

product catalogs.

Ensure that there is enough space for free airflow

around the motor. It is recommended to have a

clearance between the fan cover and the wall etc. of

at least ½ of the air intake of the fan cover. Additional

information may be found from the product catalog

or from the dimension drawings available on our web

pages: www.abb.com/motors&generators.

Correct alignment is essential to avoid bearing,

vibration and possible shaft failures.

Mount the motor on the foundation using the

appropriate bolts or studs and place shim plates

between the foundation and the feet.

Align the motor using appropriate methods.

If applicable, drill locating holes and fix the

locating pins into position.

Mounting accuracy of coupling half: check that

clearance b is less than 0.05 mm and that the difference a1 to a2 is also less than 0.05 mm. See figure 2.

Re-check the alignment after final tightening of

the bolts or studs.

Do not exceed permissible loading values for

bearings as stated in the product catalogs.

Check that the motor has sufficient airflow.

Ensure that no nearby objects or direct sunshine

radiate additional heat to the motor.

For flange mounted motors (e.g. B5, B35, V1),

make sure that the construction allows sufficient

air flow on the outer surface of the flange.

Coupling halves and pulleys must be fitted on the

shaft by using suitable equipment and tools

which do not damage the bearings and seals.

Never fit a coupling half or pulley by hammering

or removing it by using a lever pressed against

the body of the motor.

WARNING

Excessive belt tension will damage

bearings and can cause shaft damage.

4.5 Balancing and fitting coupling halves and pulleys

4.7 Radial forces and belt drives

4.6 Mounting and alignment of the motor

第12页

44 3GZF500730-85 REV H EN 05-2022

Check that drain holes and plugs face downwards. In vertical position mounted motors,

the drain plugs may be in horizontal position.

The terminal box on standard single speed motors normally contains six winding terminals and

at least one earth terminal.

In addition to the main winding and earthing terminals, the terminal box can also contain connections for thermistors, heating elements or other

auxiliary devices.

Suitable cable lugs must be used for the connection of all main cables. Cables for auxiliaries can

be connected into their terminal blocks as such.

Motors are intended for fixed installation only.

Unless otherwise specified, cable entry threads

are metric. The IP class of the cable gland must be

at least the same as those of the terminal boxes.

Certified conduit hub or cable connector has to

be used at the time of installation.

Cables should be mechanically protected

and clamped close to the terminal box to

fulfill the appropriate requirements of IEC/

EN 60079-0 and local installation standards.

Unused cable entries must be closed with blanking elements according to the IP class of the terminal box.

The degree of protection and diameter are specified in the documents relating to the cable gland.

WARNING

Use appropriate cable glands and seals in

the cable entries according to the type

and diameter of the cable.

Earthing must be carried out according to local

regulations before the motor is connected to the

supply voltage.

Motors with sealable plastic drain plugs are delivered in an open position. In very dusty environments, all drain holes should be closed.

The earth terminal on the frame has to be connected to PE (protective earth) with a cable as

shown in Table 5 of IEC/EN 60034-1:

Table 4.1: Minimum cross-sectional

area of protective conductors

Cross-sectional area

of phase conductors

of the installation, S, [mm2]

Minimum crosssectional area of the

corresponding protective

conductor, S, [mm2]

4 4

6 6

10 10

16 16

25 25

35 25

50 25

70 35

95 50

120 70

150 70

185 95

240 120

300 150

400 185

In addition, earthing or bonding connection facilities on the outside of electrical apparatus must

provide effective connection of a conductor with

a cross-sectional area of at least 4 mm2.

The cable connection between the network and

motor terminals must meet the requirements

stated in the national standards for installation

or in the standard IEC/EN 60204-1 according to

the rated current indicated on the rating plate.

4.8 Motors with drain plugs for condensation

4.9 Cabling and electrical connections

第13页

3GZF500730-85 REV H EN 05-2022 45

When the ambient temperature exceeds

+50 °C, cables having permissible

operating temperature of +90 °C as

minimum shall be used. Also all other

conversion factors depending on the

installation conditions shall be taken

into account while sizing the cables.

Ensure that the motor protection corresponds

to the environment and weather conditions.

For example, make sure that water cannot enter

the motor or the terminal boxes.

The seals of terminal boxes must be placed

correctly in the slots provided to ensure the correct

IP class. A leak could lead to penetration of dust or

water, creating a risk of flashover to live elements.

4.9.1 Connections for different starting methods

The terminal box on standard single speed

motors normally contains six winding terminals

and at least one earth terminal. This enables the

use of DOL- or Y/D –starting.

For two-speed and special motors, the supply

connection must follow the instructions inside

the terminal box or in the motor manual.

The voltage and connection are stamped on the

rating plate.

Direct-on-line starting (DOL):

Y or D winding connections may be used.

For example, 690 VY, 400 VD indicates

Y-connection for 690 V and D-connection for 400 V.

Star/Delta (Wye/Delta) starting (Y/D):

The supply voltage must be equal to the rated

voltage of the motor when using a D-connection.

Remove all connection links from the terminal block.

Other starting methods and severe starting

conditions:

In cases where other starting methods e.g.

converter or soft starter will be used in the duty

types of S1 and S2, it is considered that the device

is “isolated from the power system when the

electrical machine is running” as in the standard

IEC 60079-0 and thermal protection is optional.

4.9.2 Connections of auxiliaries

If a motor is equipped with thermistors or other

RTDs (Pt100, thermal relays, etc.) and auxiliary

devices, it is recommended they be used and

connected by appropriate means. For certain

applications, it is mandatory to use thermal

protection. More detailed information can be

found in the documents delivered with the

motor. Connection diagrams for auxiliary

elements and connection parts can be found

inside the terminal box.

The maximum measuring voltage for the

thermistors is 2.5 V. The maximum measuring

current for Pt100 is 5 mA. Using a higher

measuring voltage or current may cause errors

in readings or a damaged temperature detector.

The insulation of thermal sensors fulfills

the requirements of basic insulation.

The shaft rotates clockwise when viewing the

shaft face at the motor drive end, and the line

phase sequence – L1, L2, L3 – is connected to

the terminals as shown in figure 3.

To alter the direction of rotation, interchange

any two connections on the supply cables.

If the motor has a unidirectional fan, ensure

that it rotates in the same direction as the

arrow marked on the motor.

4.10 Terminals and direction of rotation

第14页

46 3GZF500730-85 REV H EN 05-2022

5 Operation

The motors are designed for the following conditions unless otherwise stated on the rating plate:

• Motors are to be installed in fixed installations

only.

• Normal ambient temperature range is from

–20 °C to +40 °C.

• Maximum altitude is 1000 m above sea level.

• The variation of the supply voltage and

frequency may not exceed the limits mentioned

in relevant standards. Tolerance for supply

voltage is ±5 %, and for frequency ±2 %

according to the figure 4 (EN / IEC 60034-1,

paragraph 7.3, Zone A). Both extreme values

are not supposed to occur at the same time.

The motor can only be used in applications for

which it is intended. The rated nominal values and

operation conditions are shown on the motor rating plates. In addition, all requirements of this

manual and other related instructions and standards must be followed.

If these limits are exceeded, motor data and construction data must be checked. Please contact

ABB for further information.

WARNING

Ignoring any instructions or maintenance

of the apparatus may jeopardize safety

and thus prevent the use of the motor.

5.1 General

第15页

3GZF500730-85 REV H EN 05-2022 47

6 Low voltage motors in variable

speed operation

This part of the manual provides additional

instructions for motors used in frequency

converter supplies. The motor is intended to

operate from a single frequency converter supply

and not motors running in parallel from one

frequency converter. Instructions given by the

converter manufacturer shall be followed.

Variable speed drives create higher voltage

stresses than the sinusoidal supply on the

winding of the motor. Therefore, the winding

insulation of the motor as well as the filter at

the converter output must be dimensioned

according following instructions.

6.2.1 Selection of winding insulation for

ABB converters

In the case of ABB e.g. AC_8_ _-series and

AC_5_ _-series single drives with a diode

Most of the motors covered by this manual are

equipped with PTC thermistors or other type of

RTD’s in the stator windings. It is recommended

to connect those to the frequency converter.

Read more in chapter 4.9.2.

Additional information may be required by ABB

to decide on the suitability for some motor types

used in special applications or with special

design modifications.

supply unit (uncontrolled DC voltage),

the selection of winding insulation and

filters can be made according to table 6.1.

6.2.2 Selection of winding insulation

with all other converters

The voltage stresses must be limited below

accepted limits. Please contact the system

supplier to ensure the safety of the application.

The influence of possible filters must be taken

into account while dimensioning the motor.

6.1 Introduction

6.2 Winding insulation

6.3 Thermal protection

第16页

48 3GZF500730-85 REV H EN 05-2022

Insulated bearings or bearing constructions,

common mode filters and suitable cabling and

grounding methods must be used according to

the following instructions and using table 6.1.

Table 6.1 Selection of winding

insulation for ABB converters

PN < 100 kW PN ≥ 100 kW or

IEC315 ≤ Frame size ≤ IEC355

PN ≥ 350 kW or

IEC400 ≤ Frame size ≤ IEC450

UN ≤ 500 V Standard motor Standard motor

+ Insulated N-bearing

Standard motor

+ Insulated N-bearing

+ Common mode filter

500V > UN ≤ 600V Standard motor

+ dU/dt –filter (reactor)

OR

Reinforced insulation

Standard motor

+ dU/dt –filter (reactor)

+ Insulated N-bearing

OR

Reinforced insulation

+ Insulated N-bearing

Standard motor

+ Insulated N-bearing

+ dU/dt –filter (reactor)

+ Common mode filter

OR

Reinforced insulation

+ Insulated N-bearing

+ Common mode filter

500V > UN ≤ 600V

(cable length > 150 m)

Standard motor Standard motor

+ Insulated N-bearing

Standard motor

+ Insulated N-bearing

+ Common mode filter

600V > UN ≤ 690V Reinforced insulation

+ dU/dt –filter (reactor)

Reinforced insulation

+ dU/dt –filter (reactor)

+ Insulated N-bearing

Reinforced insulation

+ Insulated N-bearing

+ dU/dt –filter (reactor)

+ Common mode filter

600V > UN ≤ 690V

(cable length > 150 m)

Reinforced insulation Reinforced insulation

+ Insulated N-bearing

Reinforced insulation

+ Insulated N-bearing

+ Common mode filter

6.4.1 Elimination of bearing currents with

ABB converters

In case of ABB frequency converter e.g. AC_8_ _-

and AC_5_ _-series with a diode supply unit, the

methods according to table 6.1 must be used to

avoid harmful bearing currents in motors.

Insulated bearings which have aluminum

oxide coated inner and/or outer bores or

ceramic rolling elements are recommended.

Aluminum oxide coatings shall also be

treated with a sealant to prevent dirt and

humidity penetrating into the porous

coating. For the exact type of bearing

insulation, see the motor’s rating plate.

Changing the bearing type or insulation

method without ABB’s permission

is prohibited.

6.4.2 Elimination of bearing currents with all

other converters

The user is responsible for protecting the motor

and driven equipment from harmful bearing

currents. Instructions described in chapter 6.4.1

can be used as guideline, but their effectiveness

cannot be guaranteed in all cases.

6.4 Bearing currents

第17页

3GZF500730-85 REV H EN 05-2022 49

To provide proper grounding and to ensure compliance with any applicable EMC requirements,

motors above 30 kW shall be cabled by shielded

symmetrical cables and EMC glands, i.e. cable

glands providing 360° bonding.

Symmetrical and shielded cables are highly

recommended also for smaller motors. Make the

360° grounding arrangement at all the cable

entries as described in the instructions for the

glands. Twist the cable shields into bundles and

connect to the nearest ground terminal/bus bar

inside the terminal box, converter cabinet, etc.

Proper cable glands providing 360°

bonding must be used at all termination

points such as motor, converter, possible

safety switch, etc.

6.7.1 General

With ABB’s frequency converters, the motors can be

dimensioned by using ABB’s DriveSize dimensioning program. The tool is downloadable from the

ABB website (www.abb.com/motors&generators).

For application supplied by other converters,

the motors must be dimensioned manually.

For more information, please contact ABB.

The loadability curves (or load capacity curves)

are based on nominal supply voltage. Operation

in under or over voltage conditions may influence

on the performance of the application.

For speeds higher than the nominal speed stated on

the motor’s rating plate or in the respective product

catalog, ensure that either the highest permissible

rotational speed of the motor or the critical speed

of the whole application is not exceeded.

For motors of frame size IEC 280 and above,

additional potential equalization between the

motor frame and the driven equipment is needed,

unless both are mounted on a common steel

base. In this case, the high frequency conductivity

of the connection provided by the steel base

should be checked by, for example, measuring the

potential difference between the components.

More information about grounding and cabling of

variable speed drives can be found in the manual

“Grounding and cabling of the drive system”

(Code: 3AFY 61201998).

6.7.2 Motor loadability with AC_8_ _ – Series

of converters with DTC control

The loadability curves presented in Figures 5a – 5d

are valid for ABB AC_8_ _-series converters with

uncontrolled DC-voltage and DTC-control. The

figures show the approximate maximum continuous output torque of the motors as a function of

supply frequency. The output torque is given as a

percentage of the nominal torque of the motor.

The values are indicative and exact values are

available on request.

6.5 Cabling, grounding and EMC

6.7 Motors in variable speed applications

6.6 Operating speed

第18页

50 3GZF500730-85 REV H EN 05-2022

The maximum speed of the motor and

application may not be exceeded!

6.7.3 Motor loadability with AC_5_ _ – series

of converter

The loadability curves presented in Figures 6a – 6d

are valid for AC_5_ _ -series converters.

The figures show the approximate maximum

continuous output torque of the motors as a

function of supply frequency. The output torque

is given as a percentage of the nominal torque

of the motor. The values are indicative and exact

values are available on request.

The maximum speed of the motor and

application may not be exceeded!

6.7.4 Motor loadability with other voltage

source PWM-type converters

For other converters, with uncontrolled

DC voltage and minimum switching frequency

of 3 kHz (200…500 V), the dimensioning

instructions as mentioned in chapter 6.7.3 can be

used as guidelines. However, it shall be noted that

the actual thermal loadability can also be lower.

Please contact the manufacturer of the converter

or the system supplier.

The actual thermal loadability of a motor

may be lower than shown by guideline

curves.

6.7.5 Short time overloads

ABB motors can usually be temporarily

overloaded as well as used in intermittent duties.

The most convenient method to dimension such

applications is to use the DriveSize tool.

The usage of ABB’s motors in variable speed

applications do not usually require additional

rating plates. The parameters required for

commissioning the converter can be found

from the main rating plate. In some special

applications, however, the motors can be

equipped with additional rating plates for

variable speed applications.

Those include the following information:

• speed range

• power range

• voltage and current range

• type of torque (constant or quadratic)

• and converter type and required minimum

switching frequency.

6.8 Rating plates

The commissioning of the variable speed application must be done according to the instructions

of the frequency converter and local laws and regulations. The requirements and limitations set by

the application must also be taken into account.

All parameters needed for setting the converter

must be taken from the motor rating plates.

The most often needed parameters are:

• nominal voltage

• nominal current

• nominal frequency

• nominal speed

• nominal power

In case of missing or inaccurate

information, do not operate the motor

before ensuring correct settings!

ABB recommends using all the suitable protective features provided by the converter to improve the safety

of the application. Converters usually provide features such as (names and availability of features depend on manufacturer and model of the converter):

• minimum speed

• maximum speed

• acceleration and deceleration times

• maximum current

• maximum torque

• stall protection

6.9 Commissioning the variable speed application

第19页

3GZF500730-85 REV H EN 05-2022 51

7 Maintenance

1. Inspect the motor at regular intervals, at least

once a year. The frequency of checks depends

on, for example, the humidity level of the

ambient air and on the local weather conditions.

This can initially be determined experimentally

and must then be strictly adhered to.

2. Keep the motor clean and ensure free

ventilation airflow. If the motor is used in a

dusty environment, the ventilation system

must be regularly checked and cleaned.

3. Check the condition of shaft seals (e.g. V-ring

or radial seal) and replace if necessary.

4. Check the condition of connections and

mounting and assembly bolts.

5. Check the bearing condition by listening for

any unusual noise, vibration measurement,

bearing temperature, inspection of spent

grease or SPM bearing monitoring. Pay special

attention to bearings when their calculated

rated life time is coming to an end.

When signs of wear are noticed, dismantle the

motor, check the parts and replace if necessary.

When bearings are changed, replacement bearings must be of the same type as those originally

fitted. The shaft seals have to be replaced with

seals of the same quality and characteristics as

the originals when changing bearings.

In the case of the IP 55 motor and when the motor

has been delivered with a plug closed, it is advisable

to periodically open the drain plugs in order to ensure that the way out for condensation is not blocked

and allows condensation to escape from the motor.

This operation must be done when the motor is at

a standstill and has been made safe to work on.

7.1.1 Standby motors

If the motor is in standby for a longer period of

time on a ship or in other vibrating environment

the following measures have to be taken:

1. The shaft must be rotated regularly every

2 weeks (to be reported) by means of starting

up of the system. In case a start-up is not

possible, for any reason, at least the shaft has

to be turned by hand in order to achieve a

different position once a week. Vibrations

caused by other vessel's equipment will cause

bearing pitting which should be minimized by

regular operation/hand turning.

2. The bearing must be greased while rotating

the shaft every year (to be reported). If the

motor has been provided with roller bearing

at the driven end, the transport lock must be

removed before rotating the shaft. The

transport locking must be remounted in case

of transportation.

3. All vibrations must be avoided to prevent a

bearing from failing. All instructions in the

motor instruction manual for commissioning

and maintenance have to be followed.

The warranty will not cover the winding and

bearing damages if these instructions have

not been followed.

7.1 General inspection

WARNING

Voltage may be connected at standstill

inside the terminal box for heating

elements or direct winding heating.

第20页

52 3GZF500730-85 REV H EN 05-2022

WARNING

Beware of all rotating parts!

WARNING

Grease can cause skin irritation and eye

inflammation. Follow all safety

precautions specified by the

manufacturer of the grease.

Bearing types are specified in the respective

product catalogs and on the rating plate of all

motors, except smaller frame sizes.

Reliability is a vital issue for bearing lubrication

intervals. ABB uses mainly the L1 -principle

(i.e. that 99 % of the motors are certain to make

the life time) for lubrication.

7.2.1 Motors with permanently greased bearings

Bearings are usually permanently greased bearings of 1Z, 2Z, 2RS or equivalent.

As a guide, adequate lubrication for sizes up to

250 can be achieved for the following duration,

according to L1

. For duties with higher ambient

temperatures, please contact ABB. The informative formula to change the L1 values roughly to

L10 values: L10 = 2.0 x L1

.

Duty hours for permanently greased bearings at

ambient temperatures of 25 °C and 40 °C are:

Table 7.1

Frame size Poles Duty hours

at 25 °C

Duty hours

at 40 °C

56 2 52 000 33 000

56 4–8 65 000 41 000

63 2 49 000 31 000

63 4–8 63 000 40 000

71 2 67 000 42 000

71 4–8 100 000 56 000

80–90 2 100 000 65 000

80–90 4–8 100 000 96 000

100–112 2 89 000 56 000

100–112 4–8 100 000 89 000

132 2 67 000 42 000

132 4–8 100 000 77 000

160 2 60 000 38 000

160 4–8 100 000 74 000

180 2 55 000 34 000

180 4–8 100 000 70 000

200 2 41 000 25 000

200 4–8 95 000 60 000

225 2 36 000 23 000

225 4–8 88 000 56 000

250 2 31 000 20 000

250 4–8 80 000 50 000

Data is valid up to 60 Hz.

7.2.2 Motors with regreasable bearings

Lubrication information plate and general lubrication advice.

If the motor is equipped with a lubrication information plate, follow the given values.

Greasing intervals regarding mounting, ambient

temperature and rotational speed are defined on

the lubrication information plate.

During the first start or after a bearing lubrication a temporary temperature rise may appear,

approximately 10 to 20 hours.

Some motors may be equipped with a collector

for old grease. Follow the special instructions

given for the equipment.

A. Manual lubrication

Regreasing while the motor is running

• Remove grease outlet plug or open closing

valve if fitted.

• Be sure that the lubrication channel is open.

• Inject the specified amount of grease into

the bearing.

• Let the motor run for 1-2 hours to ensure that

all excess grease is forced out of the bearing.

Close the grease outlet plug or closing valve,

if fitted.

Regreasing while the motor is at a standstill

If it is not possible to re-grease the bearings

while the motors are running, lubrication can be

carried out while the motor is at a standstill.

• In this case, use only half the amount of grease

and then run the motor for a few minutes at full

speed.

• When the motor has stopped, apply the rest of

the specified amount of grease to the bearing.

• After 1–2 running hours, close the grease outlet

plug or closing valve, if fitted.

B. Automatic lubrication

The grease outlet plug must be removed permanently with automatic lubrication or open closing

valve, if fitted.

ABB recommends only the use of electromechanical systems.

The amount of grease per lubrication interval

stated in the table should be multiplied by three

if a central lubrication system is used. When using

a smaller automatic re-grease unit (one or two

cartridges per motor) the normal amount of

grease can be used.

7.2 Lubrication

第21页

53

When 2-pole motors are automatically re-greased,

the note concerning lubricant recommendations

for 2-pole motors in the Lubricants chapter should

be followed.

The used grease should be suitable for automatic

lubrication. The automatic lubrication system deliverer and the grease manufacturer’s recommendations should check.

Calculation example of amount of grease for

automatic lubrication system

Central lubrication system: Motor IEC M3_P 315_

4-pole in 50 Hz network, re-lubrication interval

according to Table is 7600 h/55 g (DE) and

7600 h/40 g (NDE):

(DE) RLI = 55 g/7600 h*3*24 = 0,52 g/day

(NDE) RLI = 40 g/7600 h*3*24 = 0,38 g/day

Calculation example of amount of grease for

single automation lubrication unit (cartridge)

(DE) RLI = 55 g/7600 h*24 = 0,17 g/day

(NDE) RLI = 40 g/7600 h*24 = 0,13 g/day

RLI = Re-lubrication interval, DE = Drive end,

NDE = Non drive end

7.2.3 Lubrication intervals and amounts

Lubrication intervals for vertical motors are

half of the values shown in the table below.

As a guide, adequate lubrication can be achieved for

the following duration, according to L1

. For duties with

higher ambient temperatures please contact ABB. The

informative formula to change the L1 values roughly

to L10 values is L10 = 2.0 x L1

, with manual lubrication.

The lubrication intervals are based on a bearing

operating temperature of 80 °C (ambient temperature +25 °C).

An increase in the ambient temperature

raises the temperature of the bearings

correspondingly. The interval values should

be halved for a 15 °C increase in bearing

temperature and may be doubled for a

15 °C decrease in bearing temperature.

Higher speed operation, e.g. in frequency converter applications, or lower speed with heavy

load will require shorter lubrication intervals.

WARNING

The maximum operating temperature of

the grease and bearings, +110 °C, must

not be exceeded. The designed maximum

speed of the motor must not be exceeded.

3GZF500730-85 REV H EN 05-2022

Table 7.2

Frame

size

Amount

of grease

g/bearing

kW 3600

r/min

3000

r/min

kW 1800

r/min

1500

r/min

kW 1000

r/min

kW 500-900

r/min

Ball bearings, lubrication intervals in duty hours

112 10 all 10 000 13 000 all 18 000 21 000 all 2 5 000 all 28 000

132 15 all 9 000 11 000 all 17 000 19 000 all 23 000 all 26 500

160 25 ≤ 18,5 9 000 12000 ≤ 15 18 000 21 500 ≤ 11 24 000 all 24 000

160 25 > 18,5 7 500 1 0000 > 15 15 000 18 000 > 11 22 500 all 24 000

180 30 ≤ 22 7 000 9 000 ≤ 22 15 500 18 500 ≤ 15 24 000 all 24 000

180 30 > 22 6 000 8 500 > 22 14 000 17 000 > 15 21 000 all 24 000

200 40 ≤ 37 5 500 8 000 ≤ 30 14 500 17 500 ≤ 22 23 000 all 24 000

200 40 > 37 3 000 5 500 > 30 10 000 12 000 > 22 16 000 all 20 000

225 50 ≤ 45 4 000 6 500 ≤ 45 13 000 16 500 ≤ 30 22 000 all 24 000

225 50 > 45 1 500 2 500 > 45 5 000 6 000 > 30 8 000 all 10 000

250 60 ≤ 55 2 500 4 000 ≤ 55 9 000 11 500 ≤ 37 15 000 all 18 000

250 60 > 55 1 000 1 500 > 55 3 500 4 500 > 37 6 000 all 7 000

2801) 60 all 2 000 3 500 – – – – – – –

2801) 60 – – – all 8 000 10 500 all 14 000 all 17 000

280 35 all 1 900 3 200 – – – – – – –

280 40 – – – all 7 800 9 600 all 13 900 all 15 000

315 35 all 1 900 3 200 – – – – – – –

315 55 – – – all 5 900 7 600 all 11 800 all 12 900

355 35 all 1 900 3 200 – – – – – – –

355 70 – – – all 4 000 5 600 all 9 600 all 10 700

400 40 all 1 500 2 700 – – – – – – –

400 85 – – – all 3 200 4 700 all 8 600 all 9 700

450 40 all 1 500 2 700 – – – – – – –

450 95 – – – all 2 500 3 900 all 7 700 all 8 700

5008 40 all 3 000 5 300 – – – – – – –

5008 85 – – – all 6400 9 500 all 17 200 all 19 400

5010 40 all 1 300 2 400 – – – – – – –

5010 85 – – – all 4 900 7 200 all 13 200 all 14 800

5012 85 – – – all 2 700 3 900 all 7 100 all 8 000

第22页

54 3GZF500730-85 REV H EN 05-2022

Frame

size

Amount

of grease

g/bearing

kW 3600

r/min

3000

r/min

kW 1800

r/min

1500

r/min

kW 1000

r/min

kW 500-900

r/min

Roller bearings, lubrication intervals in duty hours

160 25 ≤ 18,5 4 500 6 000 ≤ 15 9 000 10 500 ≤ 11 12 000 all 12 000

160 25 > 18,5 3 500 5 000 > 15 7 500 9 000 > 11 11 000 all 12 000

180 30 ≤ 22 3 500 4 500 ≤ 22 7 500 9 000 ≤ 15 12 000 all 12 000

180 30 > 22 3 000 4 000 > 22 7 000 8 500 > 15 10 500 all 12 000

200 40 ≤ 37 2 750 4 000 ≤ 30 7 000 8 500 ≤ 22 11 500 all 12 000

200 40 > 37 1 500 2 500 > 30 5 000 6 000 > 22 8 000 all 10 000

225 50 ≤ 45 2 000 3 000 ≤ 45 6 500 8 000 ≤ 30 11 000 all 12 000

225 50 > 45 750 1 250 > 45 2 500 3 000 > 30 4 000 all 5 000

250 60 ≤ 55 1 000 2 000 ≤ 55 4 500 5 500 ≤ 37 7 500 all 9 000

250 60 > 55 500 750 > 55 1 500 2 000 > 37 3 000 all 3 500

2801) 60 all 1 000 1 750 – – – – – – –

2801) 70 – – – all 4 000 5 250 all 7 000 all 8 500

280 35 all 900 1 600 – – – – – – –

280 40 – – – all 4 000 5 300 all 7 000 all 8 500

315 35 all 900 1 600 – – – – – – –

315 55 – – – all 2 900 3 800 all 5 900 all 6 500

355 35 all 900 1 600 – – – – – – –

355 70 – – – all 2 000 2 800 all 4 800 all 5 400

400 40 all – 1 300 – – – – – – –

400 85 – – – all 1 600 2 400 all 4 300 all 4 800

450 40 all – 1 300 – – – – – – –

450 95 – – – all 1 300 2 000 all 3 800 all 4 400

5008 40 all – 2 700 – – – – – – –

5008 85 – – – all 3 200 4 700 all 8 600 all 9 700

5010 40 all – 1 200 – – – – – – –

5010 85 – – – all 2 500 3 600 all 6 600 all 7 400

5012 85 all – – all 1 300 1 900 all 3 500 all 4 000

1) M3AA

7.2.4 Lubricants

WARNING

Do not mix different types of grease.

Incompatible lubricants may cause

bearing damage.

When re-greasing, use only special ball bearing

grease with the following properties:

• good quality grease with lithium complex soap

and with mineral- or PAO-oil

• base oil viscosity 100-160 cST at 40 °C

• consistency NLGI grade 1.5 - 3 *)

• temperature range –30 °C - +120 °C, continuously

*) A stiffer end of scale is recommended for vertical mounted motors or in hot conditions.

The above mentioned grease specification is valid

if the ambient temperature is above –30 °C or below +55 °C, and the bearing temperature is below

110 °C; otherwise, consult ABB regarding suitable

grease.

Grease with the correct properties is available

from all major lubricant manufacturers.

Admixtures are recommended, but a written

guarantee must be obtained from the lubricant

manufacturer, especially concerning EP admixtures, that admixtures do not damage bearings or

the properties of lubricants at the operating temperature range.

WARNING

In general, lubricants containing EP

admixtures are not recommended. In

some cases it can cause harm in the

bearing, therefore its use has to be

evaluated case by case together with

lubricant suppliers.

The following high performance greases can be used:

• Mobil Unirex N2 or N3 (lithium complex base)

• Mobil Mobilith SHC 100 (lithium complex base)

• Shell Gadus S5 V 100 2 (lithium complex base)

• Klüber Klüberplex BEM 41-132 (special lithium base)

• FAG Arcanol TEMP110 (lithium complex base)

• Lubcon Turmogrease L 802 EP PLUS

(special lithium base)

• Total Multis Complex S2 A (lithium complex base)

Always use high speed grease for high

speed 2-pole motors where the speed

factor is higher than 480,000 (calculated

as Dm x n where Dm = average bearing

diameter, mm; n = rotational speed, r/min).

The following greases can be used for high speed

cast iron motors but not mixed with lithium complex greases:

• Klüber Klüber Quiet BQH 72-102 (polyurea base)

• Lubcon Turmogrease PU703 (polyurea base)

If other lubricants are used, check with the manufacturer that the qualities correspond to those of the

above mentioned lubricants. The lubrication intervals

are based on the listed high performance greases

above. Using other greases can reduce the interval.

第23页

3GZF500730-85 REV H EN 05-2022 55

8 After Sales Support

Unless otherwise stated, spare parts must be

original parts or approved by ABB.

When ordering spare parts, the motor serial

number, full type designation and product code,

as stated on the rating plate, must be specified.

Rewinding should always be carried out by

qualified repair shops.

Smoke venting and other special motors should

not be rewound without first contacting ABB.

Special care should be taken with the bearings.

These must be removed using pullers and fitted

by heating or using special tools.

Bearing replacement is described in detail in a

separate instruction leaflet available from the

ABB Sales Office.

Any directions placed on the motor, such as labels,

must be followed. The bearing types indicated on

the rating plate must not be changed.

8.1 Spare parts

8.2 Dismantling, re-assembly and rewinding

8.3 Bearings

第24页

56 3GZF500730-85 REV H EN 05-2022

Most of ABB’s motors have a sound pressure level

not exceeding 82 dB (A) (± 3 dB) at 50 Hz.

Values for specific motors can be found in the relevant product catalogs. At 60 Hz sinusoidal supply,

the values are approximately 4 dB(A) higher compared to 50 Hz values stated in the product catalogs.

For sound pressure levels at frequency converter

supplies, please contact ABB.

When motor(s) need to be scrapped or recycled,

appropriate means, local regulations and laws

must be followed.

9 Environmental requirements

第25页

3GZF500730-85 REV H EN 05-2022 57

These instructions do not cover all details or variations in equipment nor provide information for

every possible condition to be met in connection

with installation, operation or maintenance.

Should additional information be required,

please contact the nearest ABB Sales Office.

Motor troubleshooting chart

Your motor service and any troubleshooting

must be handled by qualified persons who

have the proper tools and equipment.

10 Troubleshooting

Table 10.1: Troubleshooting

TROUBLE CAUSE WHAT TO DO

Motor fails to start Blown fuses Replace fuses with proper type and rating.

Overload trips Check and reset overload in starter.

Improper power supply Check to see that power supplied agrees with

motor rating plate and load factor.

Improper line connections Check connections against diagram supplied

with motor.

Open circuit in winding or

control switch

Indicated by humming sound when switch is

closed. Check for loose wiring connections and

ensure that all control contacts are closing.

Mechanical failure Check to see if motor and drive turn freely.

Check bearings and lubrication.

Short circuited stator Contact ABB

or

Ensure that the supply is disconnected and

grounding for work done, disconnect the cables

and measure the insulation resistance.

Poor stator coil connection Indicated by blown fuses. Motor must be rewound.

Remove end shields and locate fault.

Motor may be overloaded Reduce load.

Motor stalls One phase may be open Check lines for open phase.

Wrong application Change type or size. Consult equipment supplier.

Overload Reduce load.

Low voltage Ensure the rating plate voltage is maintained.

Check connection.

Open circuit Fuses blown. Check overload relay, stator and

push buttons.

Motor runs and

then dies down

Power failure Check for loose connections to line, fuses and

control.

Motor does not

accelerate up to

nominal speed

Not applied properly Consult equipment supplier for proper type.

Voltage too low at motor terminals

because of line drop

Use higher voltage or transformer terminals or

reduce load.

Check connections. Check conductors for

proper size.

Starting load too high Check the motor’s starts against “no load”.

Broken rotor bars or loose rotor Look for cracks near the rings. A new rotor may

be required, as repairs are usually temporary.

Open primary circuit Locate fault with testing device and repair.

第26页

58 3GZF500730-85 REV H EN 05-2022

TROUBLE CAUSE WHAT TO DO

Motor takes too long

to accelerate and/or

draws high current

Excessive load Reduce load.

Low voltage during start Check for high resistance. Make sure that an

adequate cable size is used.

Defective squirrel cage rotor Replace with new rotor.

Applied voltage too low Correct power supply.

Wrong rotation

direction

Wrong sequence of phases Reverse connections at motor or at switchboard.

Motor overheats

while running

Overload Reduce load.

Frame or ventilation openings may be full of

dirt and prevent proper ventilation of motor

Open vent holes and check for a continuous

stream of air from the motor.

Motor may have one phase open Check to make sure that all leads and cables are

well connected.

Grounded coil Motor must be rewound.

Unbalanced terminal voltage Check for faulty leads, connections and

transformers.

Motor vibrates Motor misaligned Realign.

Weak support Strengthen base.

Coupling out of balance Balance coupling.

Driven equipment unbalanced Rebalance driven equipment.

Defective bearings Replace bearings.

Bearings not in line Repair motor

Balancing weights shifted Rebalance rotor.

Contradiction between balancing of rotor

and coupling (half key - full key)

Rebalance coupling or rotor.

Poly phase motor running single phase Check for open circuit.

Excessive end play Adjust bearing or add shim.

Scraping noise Fan rubbing end shield or fan cover Correct fan mounting.

Loose on bedplate Tighten holding bolts.

Noisy operation Air gap not uniform Check and correct end shield fits or bearing fits.

Rotor unbalance Rebalance rotor.

Hot bearings Bent or sprung shaft Straighten or replace shaft.

Excessive belt pull Decrease belt tension.

Pulleys too far away from shaft shoulder Move pulley closer to motor bearing.

Pulley diameter too small Use larger pulleys.

Misalignment Correct by realignment of the drive.

Insufficient grease Maintain proper quality and amount of grease

in bearing.

Deterioration of grease or lubricant

contaminated

Remove old grease, wash bearings thoroughly

in kerosene and replace with new grease.

Excess lubricant Reduce quantity of grease, bearing should not

be more than half full.

Overloaded bearing Check alignment, side and end thrust.

Broken ball or rough races Replace bearing, clean housing thoroughly first.

第27页

3GZF500730-85 REV H EN 05-2022 59

11 Figures

100

50

10

5

1.0

0.5

0.1

0.05

-10 0 10 20 30 40 50 60 70 80 90 100

1)

a1 b

a2

Key

X-axis: Winding temperature, Celsius

Degrees

Y-axis: Insulation Resistance

Temperature Coefficient, ktc

1) To correct observed insulation

resistance, Ri

, to 40 °C multiply it by the

temperature coefficient ktc . Ri 40 °C = Ri

x

Figure 1. Diagram

illustrating the

insulation resistance

dependence from

the temperature and

how to correct the

measured insulation

resistance to the

temperature of 40 °C.

Figure 2. Mounting of

half-coupling or pulley

Figure 1.

Figure 2.

第28页

60 3GZF500730-85 REV H EN 05-2022

1

2

3

Y

X

1.00 1.02

0.90

0.98

1.10

0.93

0.95

1.05

1.03

0.95

1.09

Key

X axis frequency p.u.

Y axis voltage p.u.

1 zone A

2 zone B (outside zone A)

3 rating point

Figure 3. Connection

of terminals for

main supply

Figure 4. Voltage and

frequency deviation

in zones A and B

Figure 3.

Figure 4.

第29页

3GZF500730-85 REV H EN 05-2022 61

Guideline loadability curves with converters with DTC control

Figure 5a. Conventer

with DTC control, 50

Hz, temperature rise B

Figure 5b. Conventer

with DTC control, 60

Hz, temperature rise B

Figure 5c. Conventer

with DTC control, 50

Hz, temperature rise F

Figure 5d. Conventer

with DTC control, 60

Hz, temperature rise F

Figure 5a.

Figure 5b.

Figure 5c.

Figure 5d.

第30页

62 3GZF500730-85 REV H EN 05-2022

Guideline loadability curves with other voltage source PWM type

Figure 6a. Other

voltage source PWM

type converter, 50 Hz,

temperature rise B

Figure 6b. Other

voltage source PWM

type converter, 60 Hz,

temperature rise B

Figure 6c. Other

voltage source PWM

type converter, 50 Hz,

temperature rise F

Figure 6d. Other

voltage source PWM

type converter, 60 Hz,

temperature rise F

Figure 6a.

Figure 6b.

Figure 6c.

Figure 6d.

第31页

3GZF500730-85 REV H EN 05-2022 63

第32页

3GZF500730-85 Rev H EN 06-2022

abb.com/motors&generators

© Copyright 2022 ABB. All rights reserved.

Specifications subject to change without notice.

第33页

LOW VOLTAGE WATER COOLED MOTORS

Additional manual

Additional Manual for LOW VOLTAGE water cooled motors .............................................................................. EN 5

Zusätzliches Handbuch für Wassergekühlte NIEDERSPANNUNGS-Motoren .................................................. DE 9

Manuel supplémentaire pour les Moteurs BASSE TENSION à refroidissement par eau ............................... FR 13

Manual adicional para Motores refrigerados por agua de BAJA TENSIÓN ..................................................... ES 17

Supplemento al manuale per motori a bassa tensione raffreddati ad acqua ................................................. IT 21

Manual för vattenkylda lågspänningsmotorer ..................................................................................................... SV 25

Lisäopas vesijäähdytteiset pienjännitemoottorit ................................................................................................ FI 29

第34页

2 9AKK104378 ML 10-2020

第35页

3

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Water cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Condensation drain holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Water leakage detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Contents

9AKK104378 ML 10-2020

第36页

4 9AKK104378 ML 10-2020

第37页

5

Validity

Handling

This additional installation, operation, and maintenance manual is valid for water cooled motors

(M3LP 280–500) and is to be read together with

the main manual (Low Voltage Motors/Manual).

Additional information may be required for some

machines due to special application and/or

design considerations.

Use

Normally, water cooled motors are manufactured

to specific customer requirements. However,

these instructions refer to ’standard’ water

cooled motor versions.

Should the motor be used or stored in

environments with the risk of sub-zero

temperatures, freezing of the water inside the

motor must be prevented. This can be done either

by emptying the water jacket or by using antifreeze additives.

Before emptying the water jacket, protect it with

a corrosion-protective emulsion, e.g. Esso Cutwell

40, Shell Dromus Oil BS, or equivalent, in

accordance with the instructions given by the

emulsion manufacturer. If the motor has been

standing for a long period of time with no water,

ensure that water can circulate freely before using

the motor again. Remove possible rust blockages

by dissolving them with oxalic acid:

1. Empty the frame of water.

2. Fill the frame with water mixed with oxalic acid

(100 g/ liter).

3. Let the acid take effect for approximately

10 minutes.

4. Empty the frame and wash it with pressurized

water.

5. Repeat the treatment if necessary.

If the motor is equipped with a separate bearing

fan, ensure that there is free ventilation airflow.

Installation of a motor with a bearing fan in a

closed flange construction (i.e. flange-mounted

motor) is not recommended.

Cleaning of motor cooling system helps to restore

system efficiency. ABB recommends using regular

flushing and cyclonic or magnetic filters, which

should be regularly maintained. Flushing can be

done as described above.

Check that water in the system is neutral or near

neutral pH after flushing.

第38页

6 3GZF500730-85 REV G EN 08-2018

Water cooling

In motors type M3LP, waste heat is drawn off by

water circulating inside the motor housing. The

water circulates around the motor in a jacket inside the housing and flows out through an outlet.

Motor frame sizes 280–315 have one water inlet

and one outlet with R ½\" or R 1\" threads in Dand ND-end (fig 1).

Motor frame sizes 355–500 have one water inlet

and one outlet with R 1\" threads in ND-end (fig 1).

Note! Read the cooling water instruction plate

as well as the markings for inlet and outlet pipes

on the motor!

Requirements for cooling water in motor

sizes 280–315

Water with a proportion of chloride up to

3000 mg/l can be used if the ingress of

oxygen into cooling water is prevented and

the cooling water temperature does not

exceed 30 °C. The highest allowed pressure

for cooling water is 5 bar.

Requirements for cooling water in motor

sizes 355–500

Cooling water must be tap water quality. Sea

water or water with a proportion of chloride

above 120 mg/l should not be used. The

highest allowed pressure for cooling water is

5 bar, with a recommended maximum input

water temperature of 40 °C. Steel frame

water- cooled construction is only to be used

with a closed fresh water circulation. The

cooling water circulates in ducts integrated in

the machine frame. The material of the frame

and ducts is carbon steel according to the

standard EN 10025-S235JR. This material is

prone to corrosion in saline and foul water.

The corrosion products and fouling deposits

might block the water flow in the ducts. This

is why it is important to use pure water in the

cooling system.

Standard values for the cooling water to be

used in the cooling system:

• pH 6.5–9.5

• Alkalinity (CaCO3) > 1 mmol/l

• Chloride (Cl) < 120 mg/l

• Conductivity < 1500 μS/cm

In most cases, normal tap water, i.e. water for

domestic consumption, meets all these

requirements.

The cooling water can also be inhibited with

an agent protecting the cooling system

against corrosion, fouling, and, when

necessary, against freezing. All materials in

contact with the cooling water (pipes, heat

exchanger, etc.) must be taken into account

when selecting a suitable inhibitor.

Use only suitable and high-class connection

parts and seals to connect the machine to the

water circuit.

NOTE!

Only closed-circuit water systems can be used in compliance with the requirements specified in the following section. Open water systems can be used in

types M3LP 280–315 when cooling water with a proportion of chloride below

120 mg/l is used. Water with a proportion of chloride up to 3000 mg/l can be

used if the ingress of oxygen into cooling water is prevented and the cooling

water temperature does not exceed 30 °C.

Connection

9AKK104378 ML 10-2020

第39页

9AKK104378 ML 10-2020 7

In environments with risk of sub-zero temperatures, a glycol/water mixture can be used with

40/60 mixture (glycol/water), with a recommended minimum environment temperature of

-20 °C.

The lower the cooling water input temperature,

the better the cooling of the motor.

For some cases a higher input temperature can

be allowed when requested and checked by the

manufacturer.

The outlet water temperature rise is from 7–15 K.

The minimum pressure and amount of cooling

water for the basic construction of a water

cooled motor is shown in the following table.

Please check the requirements for pressure and

the amount of cooling water in the case of special constructions.

(If the amount of water varies, its temperature

rise will be inversely proportional to the flow rate.)

Motor type

M3LP

Frame type

Number of

inlets

Cooling

water flow

rate

(l/min)

Water

pressure

min. (bar)

Water

temp. rise

(K)

Heat transfer of thermal loss in

(approx.) ratio air/water at room

temperature

Temperature of inlet cooling water

25 °C 40 °C

Water-space

of st. frame

(l)

280 SM_ 1 20 2,0 7-12 10/90 30/70 1,2

315 KH_ 1 30 2,0 7-12 10/90 30/70 3,5

315 LK_ 1 30 2,0 7-12 10/90 30/70 4,7

355 ML_ 1 30 2,0 10-15 10/90 30/70 28

355 LK_ 1 35 2,0 10-15 10/90 30/70 35

400 L_ 1 40 2,0 10-15 10/90 30/70 50

450 L_ 1 50 2,0 10-15 10/90 30/70 65

500 L_ 1 60 2,0 10-15 10/90 30/70 71

第40页

8 9AKK104378 ML 10-2020

Filling or draining cooling water

When filling, open the air plug on top of the motor (fig. 1). Let the cooling water flow into the

motor until it comes out of the air gap. Close the

air gap with a plug and seal the joint with sealing tape or strip. Filling must be done carefully

so that no air is left in the motor’s cooling channels. Check for possible leaks after the piping

and joints have been connected.

When emptying, open the emptying plug underneath the motor and the air plug on top of the

motor. In motor sizes 280–315 emptying can be

done with pressurized air. After emptying, the

plugs must be re-fitted and the seals of the

joints must be checked.

It is of special importance with water cooled

motors that the condensation drain holes are located in the correct position (fig. 1). Check that

the condensation drain holes face downwards,

especially when the mounting arrangement differs from standard.

Condensation drain holes

As an option, there is the possibility to order the

motors with a float type leakage detector (fig.

2). The leakage detector has a magnetic float

switch. The magnetic float switch is positioned

on a non-magnetic guide tube. When a specified

water level is reached, the magnetic field produced by the magnet in the float actuates a reed

switch (sealed contact) inside the guide tube.

This closes the electric circuit that transmits the

alarm signal to the control board.

Vertical mounting of the motor has only one

leakage detector, while horizontal mounting has

two. The detectors are connected in the lowest

part of the motor and vertically installed according to the mounting arrangement of the motor.

The maximum deviation from the vertical axis

line is ±30°.

Electrical connection of float switch

max. voltage

230 V DC/AC

max. current 1 A switch capacity

100 VA

Water leakage detector

第41页

9

Gültigkeit

Handhabung

Dieses zusätzliche Installations-, Betriebs- und

Wartungshandbuch gilt für wassergekühlte

Motoren (M3LP 280–500) und muss zusammen mit

dem Haupthandbuch (Niederspannungsmotoren/

Handbuch) gelesen werden. Aufgrund spezieller

Anwendungs- und/oder Konstruktionshinweise

können für manche Maschinen zusätzliche

Informationen erforderlich sein.

Verwendung

Normalerweise werden wassergekühlte Motoren

nach spezifischen Kundenanforderungen

hergestellt. Diese Anleitung bezieht sich jedoch

auf „standardmäßige“ wassergekühlte

Motorversionen.

Sollte der Motor in Regionen mit einem Risiko von

Minustemperaturen eingesetzt oder gelagert

werden, muss das Einfrieren des Wassers im

Inneren des Motors verhindert werden. Dies kann

entweder durch Entleeren des Wassermantels

oder durch Verwendung von FrostschutzAdditiven erfolgen.

Vor dem Entleeren des Wassermantels ist dieser,

gemäß den Anweisungen des EmulsionHerstellers, mit einer korrosionssicheren

Emulsion zu schützen, z. B. Esso Cutwell 40, Shell

Dromus Oil BS oder gleichwertig. Wenn der Motor

über einen längeren Zeitraum ohne Wasser steht,

stellen Sie sicher, dass Wasser frei zirkulieren

kann, bevor Sie den Motor wieder in Betrieb

setzen. Entfernen Sie mögliche Rostschutzmittel,

indem Sie sie mit Oxalsäure auflösen:

1. Leeren Sie das Wasser aus dem Rahmen.

2. Füllen Sie den Rahmen mit Wasser, das mit

Oxalsäure gemischt ist (100 g/Liter).

3. Lassen Sie die Säure für ca. 10 Minuten

einwirken.

4. Entleeren Sie den Rahmen und reinigen Sie

ihn mit Druckwasser.

5. Wiederholen Sie die Behandlung ggf.

Wenn der Motor mit einem separaten Lagerlüfter

ausgestattet ist, stellen Sie sicher, dass ein freier

Belüftungsluftstrom vorhanden ist. Der Einbau

eines Motors mit einem Lagerlüfter

in geschlossener Flanschbauweise

(z. B. flanschmontierter Motor) wird nicht

empfohlen.

Die Reinigung des Motorkühlsystems unterstützt

die Wiederherstellung der Systemeffizienz.

ABB empfiehlt die Verwendung von normalen

Spül-, Zyklon- oder Magnetfiltern, die regelmäßig

zu warten sind. Die Spülung kann wie oben

beschrieben erfolgen.

Prüfen Sie, ob das Wasser im System nach dem

Spülen einen neutralen oder nahezu neutralen

pH-Wert aufweist.

第42页

10 3GZF500730-85 REV G EN 08-2018

Wasserkühlung

In den Motoren vom Typ M3LP wird durch im

Motorgehäuse zirkulierendes Wasser Abwärme

abgezogen. Das Wasser zirkuliert durch einen

Mantel im Gehäuse um den Motor und strömt

durch einen Auslass aus.

Die Motorbaugrößen 280-315 haben einen

Wassereinlass und einen Auslass mit R ½- oder

R 1-Zollgewinde an der D- und ND-Seite (Abb. 1).

Die Motorbaugrößen 355-500 haben einen

Wassereinlass und einen Auslass mit

R 1-Zollgewinde im ND-Ende (Abb. 1).

Hinweis! Lesen Sie das KühlwasserHinweisschild sowie die Markierungen für

Einlass- und Auslassleitungen am Motor!

Anforderungen an das Kühlwasser in den

Motorgrößen 280–315.

Es kann Wasser mit einem Chloridanteil bis

zu 3000 mg/l verwendet werden, wenn das

Eintreten von Sauerstoff in das Kühlwasser

verhindert wird und die Kühlwassertemperatur

30 °C nicht überschreitet. Der höchste zulässige

Druck für das Kühlwasser beträgt 5 bar.

Anforderungen an das Kühlwasser in den

Motorgrößen 355–500.

Kühlwasser muss Leitungswasserqualität

aufweisen. Es darf kein Seewasser oder Wasser

mit einem Anteil von Chlorid über 120mg/l

verwendet werden. Der höchste zulässige

Druck für das Kühlwasser beträgt 5 bar, mit einer

maximalen Eingangswassertemperatur von

40 °C. Die Konstruktion mit StahlrahmenWasserkühlung darf nur in einem geschlossenen

Frischwasserkreislauf verwendet werden.

Das Kühlwasser zirkuliert in im Maschinenrahmen

integrierten Kanälen. Das Material des Rahmens

und der Kanäle ist Kohlenstoffstahl gemäß Norm

EN 10025-S235JR. Dieses Material ist in

Salzwasser und Abwasser anfällig für Korrosion.

Die Korrosionsprodukte und

Schmutzablagerungen können den

Wasserdurchfluss in den Kanälen blockieren.

Daher ist es wichtig Reinwasser im Kühlsystem

zu verwenden.

Standardwerte für das im Kühlsystem verwendete

Kühlwasser:

• pH-Wert 6,5–9,5

• Alkalität (CaCO3) > 1 mmol/l

• Chlorid (Cl) < 120 mg/l

• Leitfähigkeit < 1500 μS/cm

In den meisten Fällen erfüllt normales

Leitungswasser, d. h. Wasser für den

Haushaltsgebrauch, alle diese Anforderungen.

Das Kühlwasser kann auch mit einem Mittel

inhibiert werden, das das Kühlsystem vor

Korrosion, Verunreinigung und ggf. vor Einfrieren

schützt. Bei der Auswahl eines geeigneten

Inhibitors sind alle Materialien, die mit dem

Kühlwasser (Rohre, Wärmetauscher usw.)

in Berührung kommen, zu berücksichtigen.

Verwenden Sie zum Anschließen der Maschine

an den Wasserkreis nur geeignete und

hochwertige Anschlussteile und Dichtungen.

HINWEIS!

Nur geschlossene Wassersysteme dürfen in Übereinstimmung mit den

im folgenden Abschnitt genannten Anforderungen eingesetzt werden.

Offene Wassersysteme können für die Typen M3LP 280–315 verwendet

werden, wenn Kühlwasser mit einem Chloridanteil unter 120 mg/l verwendet

wird. Es kann Wasser mit einem Chloridanteil bis zu 3000 mg/l verwendet

werden, wenn das Eintreten von Sauerstoff in das Kühlwasser verhindert

wird und die Kühlwassertemperatur 30 °C nicht überschreitet.

Anschluss

9AKK104378 ML 10-2020

第43页

9AKK104378 ML 10-2020 11

In frostgefährdeten Regionen kann ein Glykol/

Wasser-Gemisch im Verhältnis 40/60 (Glykol/

Wasser) bei einer empfohlenen minimalen

Umgebungstemperatur von -20 °C verwendet

werden.

Je niedriger die Kühlwassereinlasstemperatur

ist, desto besser wird der Motor gekühlt.

In einigen Fällen kann bei Bedarf und nach

Rücksprache mit dem Hersteller eine höhere

Eingangstemperatur zugelassen werden.

Der Temperaturanstieg des Austrittswassers

liegt zwischen 7–15 K.

Der Mindestdruck und die Mindestmenge an

Kühlwasser für den Grundaufbau eines

wassergekühlten Motors sind in der folgenden

Tabelle dargestellt. Bei Sonderkonstruktionen

bitte die Druckanforderungen und die Menge

des Kühlwassers überprüfen.

(Wenn die Wassermenge variiert, ist ihr

Temperaturanstieg umgekehrt proportional zur

Durchflussmenge.)

Motortyp

M3LP

Rahmentyp

Anzahl

der

Einlässe

Kühlwasserdurchfluss

(l/min)

Wasserdruck

min. (bar)

Wassertemp.

Anstieg (K)

Wärmeübertragung Wärmeverlust

im (ca.) Verhältnis Luft/Wasser bei

Raumtemperatur

Temperatur des Einlasskühlwassers

25 °C 40 °C

Wasserraum

des

St.-Rahmens

(l)

280 SM_ 1 20 2,0 7-12 10/90 30/70 1,2

315 KH_ 1 30 2,0 7-12 10/90 30/70 3,5

315 LK_ 1 30 2,0 7-12 10/90 30/70 4,7

355 ML_ 1 30 2,0 10-15 10/90 30/70 28

355 LK_ 1 35 2,0 10-15 10/90 30/70 35

400 L_ 1 40 2,0 10-15 10/90 30/70 50

450 L_ 1 50 2,0 10-15 10/90 30/70 65

500 L_ 1 60 2,0 10-15 10/90 30/70 71

第44页

12 9AKK104378 ML 10-2020 9AKK104378 ML 10-2020

Kühlwasser einfüllen oder ablassen

Öffnen Sie beim Auffüllen den Luftstopfen oben

auf dem Motor (Abb. 1). Lassen Sie das

Kühlwasser in den Motor strömen, bis es aus

dem Luftspalt austritt. Schließen Sie den

Luftspalt mit einem Stopfen und dichten Sie die

Verbindung mit Dichtungsband oder Band ab.

Die Befüllung muss vorsichtig erfolgen, damit

keine Luft in den Kühlkanälen des Motors

eingeschlossen wird. Nach dem Anschließen die

Rohrleitungen und Verbindungen auf mögliche

Undichtigkeiten prüfen.

Öffnen Sie während des Entleerens den

Entleerungsstopfen unter dem Motor und den

Luftstopfen oben auf dem Motor. Für die

Motorgrößen 280–315 kann die Entleerung mit

Druckluft erfolgen. Nach dem Entleeren müssen

die Stopfen wieder eingesetzt und die

Dichtungen der Verbindungen überprüft

werden.

Bei wassergekühlten Motoren ist es besonders

wichtig, dass sich die Kondenswasserbohrungen an der richtigen Position befinden

(Abb. 1). Es ist sicherzustellen, dass die

Kondenswasserbohrungen nach unten zeigen,

insbesondere wenn die Montageanordnung vom

Standard abweicht.

Kondenswasserbohrungen

Optional besteht die Möglichkeit, die Motoren

mit einem Schwimmer-Leckagedetektor zu

bestellen (Abb. 2). Der Leckagedetektor verfügt

über einen magnetischen Schwimmerschalter.

Der magnetische Schwimmerschalter ist auf

einem nicht magnetischen Führungsrohr

angeordnet. Wenn ein angegebener

Wasserstand erreicht wird, betätigt das

Magnetfeld, das durch den Magnet im

Schwimmer erzeugt wird, einen Reed-Schalter

(Dichtungskontakt) im Führungsrohr. Dadurch

wird der Stromkreis geschlossen, der das

Alarmsignal an die Steuerplatine sendet.

Die vertikale Montage des Motors hat nur einen

Leckagedetektor, während die horizontale

Montage zwei hat. Die Detektoren werden im

tiefsten Teil des Motors angeschlossen und

vertikal entsprechend der Montageanordnung

des Motors installiert. Die maximale

Abweichung von der vertikalen Achsenlinie

beträgt ±30 °.

Elektrischer Anschluss des Schwimmerschalters

max.

Spannung

230 V DC/AC

max. Strom 1 A Schaltleistung

100 VA

Wasserleckdetektor

第45页

13

Validité

Manutention

Ce manuel d’installation, d’exploitation et de

maintenance supplémentaire est valable pour

les moteurs à refroidissement par eau

(M3LP 280–500) et doit être lu en parallèle

du manuel principal (Moteurs basse tension /

manuel). Des informations supplémentaires

peuvent être requises pour certaines machines

en raison d’applications et/ou de conceptions

spécifiques.

Utilisation

Les moteurs à refroidissement par eau sont

fabriqués conformément aux exigences

spécifiques du client. Cependant, ces instructions

se réfèrent aux versions « standard » de moteur

à refroidissement par eau.

Si le moteur est utilisé ou stocké dans des

environnements présentant un risque de

températures inférieures à zéro, il faut éviter que

l’eau à l’intérieur du moteur ne gèle. Pour ce faire,

vidangez le circuit d’eau ou utilisez des additifs

antigel.

Avant de vider le circuit d’eau, protégez-le avec

une émulsion anticorrosion, par exemple Esso

Cutwell 40, Shell Dromus Oil BS, ou équivalent,

conformément aux instructions du fabricant

de l’émulsion. Si le moteur reste immobile

pendant de longues périodes sans eau, assurezvous que l’eau peut circuler librement avant

d’utiliser à nouveau le moteur. Éliminez les

éventuels blocages par dépôt de rouille en les

dissolvant avec de l’acide oxalique :

1. Videz le circuit d’eau.

2. Remplissez le circuit d’eau mélangée à de

l’acide oxalique (100 g / litre).

3. Laissez l’acide faire effet pendant environ

10 minutes.

4. Videz le circuit et nettoyez-le avec de l’eau sous

pression.

5. Si nécessaire, répétez le traitement.

Si le moteur est équipé d’un ventilateur

de roulement séparé, assurez-vous qu’il est

correctement ventilé. L’installation d’un moteur

avec un ventilateur de roulement dans une

structure à bride fermée (c’est-à-dire un moteur

à bride) n’est pas recommandée.

Le nettoyage du système de refroidissement

du moteur permet de restaurer l’efficacité

du système. ABB recommande d’utiliser des

filtres de rinçage, d’aspiration ou magnétiques

normaux qui feront l’objet d’un entretien régulier.

Le rinçage peut s’effectuer comme décrit

ci-dessus.

Vérifiez que l’eau dans le système est neutre

ou proche du pH neutre après le rinçage.

第46页

14 3GZF500730-85 REV G EN 08-2018

Refroidissement par eau

Dans les moteurs de type M3LP, la chaleur

résiduelle est dissipée par la circulation d’eau

à l’intérieur de la carcasse du moteur.

L’eau circule autour du moteur dans un circuit

à l’intérieur de la carcasse et s’écoule à travers

une sortie.

Les moteurs 280 à 315 sont équipés d’une

entrée et d’une sortie d’eau avec filetages

R ½\" ou R 1\" côté D et ND (fig. 1).

Les moteurs 355 à 500 sont équipés d’une

entrée et d’une sortie d’eau avec filetages

R 1\" côté ND (fig. 1).

Remarque ! Lisez la plaque d’instructions

de l’eau de refroidissement ainsi que les

marquages des tuyaux d’entrée et de sortie

sur le moteur.

Exigences relatives à l’eau de refroidissement

dans les moteurs 280 à 315

De l’eau avec une proportion de chlorure jusqu’à

3 000 mg/l peut être utilisée si la pénétration

d’oxygène dans l’eau de refroidissement est

empêchée et que la température de l’eau de

refroidissement ne dépasse pas 30 °C.

La pression maximale autorisée pour l’eau

de refroidissement est de 5 bar.

Exigences relatives à l’eau de refroidissement

dans les moteurs 355 à 500

L’eau de refroidissement doit être d’une qualité

équivalente à l’eau du robinet. Il ne faut pas

utiliser d’eau de mer ou d’eau dont la proportion

de chlorure est supérieure à 120 mg/l. La pression

maximale autorisée pour l’eau de refroidissement

est de 5 bar, avec une température maximale

recommandée de l’eau d’entrée de 40 °C.

La structure à refroidissement par eau du cadre

en acier doit être utilisée uniquement avec une

circulation fermée d’eau froide. L’eau de

refroidissement circule dans des conduites

intégrées dans la carcasse de la machine.

Les conduites et circuits sont en acier au carbone

conformément à la norme EN 10025-S235JR.

Ce matériau est sensible à la corrosion dans l’eau

salée et sale. Les résidus de corrosion et les

dépôts de saletés peuvent bloquer le débit d’eau

dans les conduites. C’est pourquoi il est

important d’utiliser de l’eau pure dans le système

de refroidissement.

Valeurs standard de l’eau de refroidissement

à utiliser dans le système de refroidissement :

• pH 6,5 à 9,5

• Alcalinité (CaCO3) > 1 mmol/l

• Chlorure (Cl) < 120 mg/l

• Conductivité < 1 500 μS/cm

Dans la plupart des cas, l’eau du robinet normale,

c’est-à-dire l’eau destinée à une consommation

domestique, répond à toutes ces exigences.

L’eau de refroidissement peut également être

inhibée avec un agent protégeant le système

de refroidissement contre la corrosion,

l’encrassement et, si nécessaire, contre le gel.

Tous les matériaux en contact avec l’eau de

refroidissement (tuyaux, échangeur thermique,

etc.) doivent être pris en compte lors du choix

d’un agent inhibiteur adapté.

N’utilisez que des pièces de raccordement

adaptées et de haute qualité pour raccorder

la machine au circuit d’eau.

REMARQUE !

Seuls les systèmes d’eau en circuit fermé peuvent être utilisés conformément

aux exigences spécifiées dans la section suivante. Les systèmes à eau en circuit

ouvert peuvent être utilisés dans les types M3LP 280 à 315 lorsque l’eau de

refroidissement avec une proportion de chlorure inférieure à 120 mg/l est

utilisée. L’eau avec une proportion de chlorure jusqu’à 3 000 mg/l peut être

utilisée si la pénétration d’oxygène dans l’eau de refroidissement est empêchée

et que la température de l’eau de refroidissement ne dépasse pas 30 °C.

Raccord

9AKK104378 ML 10-2020

第47页

9AKK104378 ML 10-2020 15

Dans les environnements présentant un risque

de températures inférieures à zéro, un mélange

glycol / eau peut être utilisé avec un mélange

40 / 60 (glycol / eau), avec une température

minimale recommandée de l’environnement

de -20 °C.

Plus la température d’entrée de l’eau de

refroidissement est basse, meilleur est le

refroidissement du moteur.

Dans certains cas, une température d’entrée

plus élevée peut être autorisée lorsqu’elle est

demandée et vérifiée par le fabricant.

L’élévation de la température de l’eau de sortie

va de 7 à 15 K.

La pression et la quantité minimales d’eau

de refroidissement pour la structure de base

d’un moteur à refroidissement par eau sont

indiquées dans le tableau suivant. Veuillez

vérifier les exigences en matière de pression

et de quantité d’eau de refroidissement en cas

de structures spéciales.

(Si la quantité d’eau varie, son échauffement

sera inversement proportionnel au débit.)

Type de

moteur

M3LP

Type de

carcasse

Nombre

d’entrées

Débit d’eau

de refroidissement

(l/min)

Pression

de l’eau

min. (bar)

Augmentation

de la température de l’eau

(K)

Transfert de chaleur de la perte

thermique dans le rapport

(approximatif) air / eau

à température ambiante

Température de l’eau de

refroidissement d’entrée

25 °C 40 °C

Contenance

en eau dans

le circuit (l)

280 SM_ 1 20 2,0 7-12 10/90 30/70 1,2

315 KH_ 1 30 2,0 7-12 10/90 30/70 3,5

315 LK_ 1 30 2,0 7-12 10/90 30/70 4,7

355 ML_ 1 30 2,0 10-15 10/90 30/70 28

355 LK_ 1 35 2,0 10-15 10/90 30/70 35

400 L_ 1 40 2,0 10-15 10/90 30/70 50

450 L_ 1 50 2,0 10-15 10/90 30/70 65

500 L_ 1 60 2,0 10-15 10/90 30/70 71

第48页

16 9AKK104378 ML 10-2020

Remplissage ou vidange de l’eau de

refroidissement

Lors du remplissage, ouvrez le bouchon d’air

situé sur le dessus du moteur (fig. 1). Laissez

l’eau de refroidissement s’écouler dans le circuit

jusqu’à ce qu’elle sorte de l’espace d’air. Fermez

l’espace d’air à l’aide d’un bouchon et scellez le

joint avec un ruban d’étanchéité ou une bande.

Le remplissage doit être effectué avec soin de

façon à ce qu’il n’y ait plus d’air dans le circuit de

refroidissement du moteur. Détectez toute fuite

éventuelle une fois que les tuyaux et les joints

ont été raccordés.

Lors de la vidange, ouvrez le bouchon de

vidange situé sous le moteur et le bouchon d’air

situé sur le dessus du moteur. La vidange des

moteurs 280 à 315 peut être réalisée avec de l’air

sous pression. Après la vidange, les bouchons

doivent être remis en place et les joints doivent

être vérifiés.

Il est particulièrement important avec les

moteurs à refroidissement par eau que les trous

de purge de condensation soient dans la bonne

position (fig. 1). Vérifiez que les trous de purge

de condensation sont orientés vers le bas,

en particulier lorsque la disposition de montage

n’est pas standard.

Trous de purge de condensation

En option, il est possible de commander les

moteurs avec un détecteur de fuite de type

flotteur (fig. 2). Le détecteur de fuite est doté

d’un commutateur de flotteur magnétique.

Le commutateur de flotteur magnétique est

positionné sur un tube de guidage non

magnétique. Lorsqu’un niveau d’eau spécifié est

atteint, le champ magnétique produit par

l’aimant dans le flotteur actionne un

commutateur à ampoule (contact fermé)

à l’intérieur du tube de guidage. Cela ferme

le circuit électrique qui transmet le signal

d’alarme au tableau de commande.

La version avec montage vertical du moteur ne

comporte qu’un seul détecteur de fuite, tandis

que la version avec montage horizontal en

a deux. Les détecteurs sont connectés dans la

partie inférieure du moteur et installés

verticalement selon la disposition de montage

du moteur. L’écart maximal par rapport à la ligne

d’axe vertical est de ±30°.

Raccordement électrique du commutateur

de flotteur

tension max.

230 V DC/AC

courant max. 1 A capacité de

commutation

100 VA

Détecteur de fuite d’eau

第49页

17

Validez

Manipulación

Este manual adicional de instalación,

funcionamiento y mantenimiento es válido

para los motores refrigerados por agua

(M3LP 280–500) y debe leerse junto con

el manual principal (Motores de baja tensión/

Manual). Es posible que algunas máquinas

requieran información adicional debido a sus

consideraciones especiales de aplicación

y/o diseño.

Uso

Normalmente, los motores refrigerados por agua

se fabrican según los requisitos específicos del

cliente. No obstante, estas instrucciones hacen

referencia a las versiones «estándar» con motor

refrigerado por agua.

Si el motor se utiliza o almacena en entornos con

riesgo de temperaturas bajo cero, se deberá

evitar que el agua se congele dentro del motor.

Esto puede realizarse vaciando la camisa de agua

o usando aditivos anticongelantes.

Antes de vaciar la camisa de agua, protéjala con

una emulsión anticorrosiva, por ejemplo, Esso

Cutwell 40, Shell Dromus Oil BS o equivalente,

conforme a las instrucciones proporcionadas por

el fabricante de la emulsión. Si el motor ha estado

parado por un largo período de tiempo sin agua,

asegúrese de que el agua pueda circular

libremente antes de usar de nuevo el motor.

Elimine las posibles obstrucciones de óxido

disolviéndolas con ácido oxálico:

1. Vacíe la carcasa de agua.

2. Llene la carcasa de agua mezclada con ácido

oxálico (100 g/litro).

3. Deje que el ácido haga efecto durante unos

10 minutos.

4. Vacíe la carcasa y lávela con agua a presión.

5. Repita el procedimiento en caso necesario.

Si el motor está equipado con un ventilador de

rodamiento separado, asegúrese de que el aire

pueda fluir libremente. No se recomienda instalar

un motor con ventilador de rodamiento en una

estructura de brida cerrada (p. ej.: un motor

montado en brida).

La limpieza del sistema de refrigeración del

motor ayuda a restaurar la eficiencia del sistema.

ABB recomienda hacer lavados regulares y usar

filtros ciclónicos o magnéticos, cuyo

mantenimiento debe realizarse con regularidad.

El lavado puede realizarse de la forma descrita

anteriormente.

Compruebe que el agua del sistema sea neutra

o tenga un pH casi neutro después del lavado.

第50页

18 3GZF500730-85 REV G EN 08-2018

Refrigeración por agua

En los motores del tipo M3LP, el calor residual se

extrae mediante el agua que circula dentro de la

carcasa del motor. El agua circula alrededor del

motor por una camisa dentro de la carcasa y

fluye hacia el exterior por una salida.

Los motores con carcasa de tamaño 280–315

tienen una entrada de agua y una salida con

roscas R ½\" o R 1\" en el lado acople y no

acople(fig. 1).

Los motores con carcasa de tamaño 355–500

tienen una entrada de agua y una salida con

roscas R 1\" en el lado no acople (fig. 1).

¡Atención! ¡Lea la placa de instrucciones del

agua de refrigeración y los marcados de los

tubos de entrada y salida del motor!

Requisitos para el agua de refrigeración

en motores de tamaños 280–315

Puede utilizarse agua con una proporción de

cloruro de hasta 3000 mg/l si se evita la entrada

de oxígeno en el agua de refrigeración y si la

temperatura de esta no supera los 30 °C.

La presión máxima permitida para el agua

de refrigeración es de 5 bares.

Requisitos para el agua de refrigeración

en motores de tamaño 355–500

La calidad del agua de refrigeración debe ser

equivalente a la del agua del grifo. No se debe

utilizar agua del mar ni agua con una proporción

de cloruro superior a 120 mg/l. La presión

máxima permitida para el agua de refrigeración

es de 5 bares y la temperatura máxima

recomendada para el agua de entrada es de

40 °C. La estructura con carcasa de acero

refrigerada por agua solo permite la circulación

de agua dulce en circuito cerrado. El agua de

refrigeración circula por conductos integrados en

la carcasa de la máquina. El material de la carcasa

y los conductos son de acero al carbono según la

norma EN 10025-S235JR. Este material es

propenso a la corrosión en aguas salinas y sucias.

Los productos corroídos y los depósitos de

suciedad pueden obstaculizar el flujo del agua en

los conductos. Por esta razón es importante

utilizar agua pura en el sistema de refrigeración.

Valores estándar del agua de refrigeración que

debe utilizarse en el sistema de refrigeración:

• pH 6,5–9,5

• Alcalinidad (CaCO3) > 1 mmol/l

• Cloruro (Cl) < 120 mg/l

• Conductividad < 1500 μS/cm

En la mayoría de los casos, el agua de grifo

normal, es decir, el agua para consumo doméstico

cumple todos estos requisitos.

El agua de refrigeración puede inhibirse también

con un agente que proteja el sistema de

refrigeración contra la corrosión, la suciedad y,

en caso necesario, contra la congelación. Deberán

tenerse en cuenta todos los materiales en

contacto con el agua de refrigeración (tuberías,

intercambiador de calor, etc.) al seleccionar un

inhibidor adecuado.

Use solamente juntas y piezas de conexión

adecuadas y de alta calidad para conectar la

máquina al circuito de agua.

¡ATENCIÓN!

Solo pueden utilizarse sistemas de agua de circuito cerrado de acuerdo con

los requisitos especificados en la sección siguiente. Los sistemas de agua

abiertos pueden utilizarse en los motores de tipo M3LP 280–315 cuando

se utiliza agua de refrigeración con una proporción de cloruro inferior

a 120 mg/l. Puede utilizarse agua con una proporción de cloruro de hasta

3000 mg/l si se evita la entrada de oxígeno en el agua de refrigeración

y si la temperatura de esta no supera los 30 °C.

Conexión

9AKK104378 ML 10-2020

百万用户使用云展网进行电子书籍的制作,只要您有文档,即可一键上传,自动生成链接和二维码(独立电子书),支持分享到微信和网站!
收藏
转发
下载
免费制作
其他案例
更多案例
免费制作
x
{{item.desc}}
下载
{{item.title}}
{{toast}}